
Robust Annotation of Mobile Application Interfaces
in Methods for Accessibility Repair and Enhancement

Xiaoyi Zhang, Anne Spencer Ross, James Fogarty

Paul G. Allen School of Computer Science & Engineering

DUB Group, University of Washington

{xiaoyiz, ansross, jfogar

ty}@cs.washington.edu

ABSTRACT

Accessibility issues in mobile apps make those apps difficult

or impossible to access for many people. Examples include

elements that fail to provide alternative text for a screen reader,

navigation orders that are difficult, or custom widgets that

leave key functionality inaccessible. Social annotation

techniques have demonstrated compelling approaches to such

accessibility concerns in the web, but have been difficult to

apply in mobile apps because of the challenges of robustly

annotating interfaces. This research develops methods for

robust annotation of mobile app interface elements. Designed

for use in runtime interface modification, our methods are

based in screen identifiers, element identifiers, and screen

equivalence heuristics. We implement initial developer tools

for annotating mobile app accessibility metadata, evaluate

our current screen equivalence heuristics in a dataset of 2038

screens collected from 50 mobile apps, present three case

studies implementing runtime repair of common accessibility

issues, and examine repair of real-world accessibility issues

in 26 apps. These contributions overall demonstrate strong

opportunities for social annotation in mobile accessibility.

Author Keywords

Robust annotation; runtime modification; accessibility.

ACM Classification Keywords

Human-centered computing → Accessibility systems and

tools.

INTRODUCTION
Mobile apps have become ubiquitous, used in accessing a

wide variety of services online and in the physical world

(e.g., financial services, transit information). However, many

apps remain difficult or impossible to access for people with

disabilities, an estimated 15% of the world population [30].

For example, recent research examined the prevalence of

accessibility issues in a sample of 100 Android apps, finding

that every app included at least one accessibility issue [33].

95% of the examined apps included touchable elements that

were smaller than recommended by Android’s accessibility

guidelines [17], making them difficult to access for many

people (e.g., people with motor impairments). 94% included

elements that lacked alternative text, making them difficult

to access using a screen reader (e.g., for people with visual

impairments). 85% included elements with low text contrast,

another barrier for people with vision impairments.

In addition to accessibility issues that can be objectively

defined and detected by tools like Google Accessibility

Scanner [14], considering the context of an interaction often

reveals additional barriers. For example, a person using a

screen reader may need to swipe 10 to 20 times before the

focus moves to elements that should be readily available

(e.g., the “Menu” button in the Dropbox app). As another

example, a single inaccessible element can often undermine

the overall functionality of an app (e.g., the 5-star rating

element of the Yelp app lacks accessibility support, leaving

this core functionality inaccessible to many people).

Mobile platforms have begun to support interactive correction
of accessibility failures. For example, Android’s TalkBack

screen reader allows end-users to add custom labels to

elements where an app developer has failed to provide a

label. However, this functionality is limited to ImageButton

or ImageView elements and requires an app developer has

provided a ViewIDResourceName, an optional property that

is often not specified. In an evaluation reported later in this

paper, we examined 50 apps and found that TalkBack can

apply custom labels to less than 13.6% of elements that it

visits. TalkBack also does not support correcting an element

that does have a label, even if that label is misleading.

Prior research in the runtime repair of accessibility failures

has often focused on the web, in part because a webpage’s

underlying representation is available and can be modified

prior to rendering by the browser. Social annotation is one

powerful approach to accessibility repair [24,40], in which

people annotate interface elements with metadata that is then

used to repair accessibility failures in future interactions

(e.g., annotating images that lack alternative text with text

that can then be presented to future people who encounter

that image using a screen reader). Such approaches require

a robust method for determining when an annotation is

applied, typically addressed via the combination of a URL

(i.e., indicating the context in which an annotation is applied)

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

UIST '18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright is held by the owner/author(s). Publication rights licensed to

ACM.
ACM ISBN 978-1-4503-5948-1/18/10…$15.00

https://doi.org/10.1145/3242587.3242616

and an XPath (i.e., within the context of the URL, indicating

which element is annotated). Despite advances in runtime

enhancement of mobile apps [31,48], social annotation

remains difficult to apply in mobile apps because of a lack of

methods for specifying an annotation context (i.e., the lack of

a robust notion of a screen identifier, analogous to a URL).

This paper addresses this underlying requirement for robust

annotation of mobile app interface elements. We develop a

template-based approach to a screen identifier, implemented

for the Android platform. We then use this in demonstrating

several types of runtime accessibility repair: 1) applying

custom labels to interface elements, 2) correcting navigation

order, and 3) authoring accessibility context for inaccessible

customized elements (e.g., a 5-star rating element).

The specific contributions of our work therefore include:

• Development of methods for robust annotation of mobile

app interface elements. Designed for use in runtime interface

modification, our methods combine a novel approach to

screen identifiers and screen equivalence heuristics with

familiar techniques for Android element identification.

• Implementation of initial developer tools for annotating

mobile app accessibility metadata, including tools for

authoring annotations and applying annotations at runtime.

• Evaluation of our current screen equivalence heuristics in

a dataset of 2038 screens collected from 50 mobile apps.

• Three case studies demonstrating the implementation of

runtime repair of common accessibility issues, each using

the robust annotation methods developed in this research.

• An examination of repairing real-world accessibility issues

in 26 apps, including popular Android apps, apps with

accessibility issues reported in online forums, and apps

identified through an in-person interview with a person

who regularly uses the Android TalkBack screen reader.

RELATED WORK

Our current research is informed by prior research in social

annotation and web accessibility, in runtime interface

modification, and in screen and element identifiers.

Social Annotation and Web Accessibility

The web’s representation has long encouraged enhancement

of content through annotation, from annotation capabilities in

Mosaic [43] to W3C efforts in interoperable annotations [44].

Prior research has developed robust web annotation to enable

content customization and adaptation for end-users [4,5,28].

Extensive research in social accessibility has applied social

annotation to web accessibility (e.g., [3,22,34,35,40,41]).

Systems have explored various techniques, with a core that:

1) a person observes an accessibility failure, 2) that person or

another person annotates the interface with metadata used by

a tool that can repair the failure, and 3) annotation data is

shared so that future users of the interface benefit from the

repair. Examples of research in social annotation for web

accessibility include providing image alternative text and

other metadata [35,40,41], repairing navigation order [34],

sharing scripts for site-specific repairs [3], and designing

infrastructure for crowdsourcing contributions [22].

Runtime Interface Modification

Techniques for modifying the web benefit from the ability

to directly modify a page prior to its rendering by a browser

(e.g., modifying the HTML, CSS, or DOM). In contrast,

non-web architectures generally lack an ability to access or

modify internal representation, requiring different approaches

to runtime modification. Prior research in desktop interfaces

has replaced of an application’s toolkit [12,13,29] or used

window manager redirection of input and output [8,39,42].

A meaningful modification requires understanding the

content and state of that interface, generally obtained through

a combination of accessibility API data (e.g., [6,39]) and

pixel-based analysis of interface content (e.g., [8,9,10,20,46]).

Less research has explored runtime interface modification

in mobile platforms, in part due to their security architectures

and greater concern for performance (e.g., a challenge for

pixel-based techniques developed in the desktop context).

Notable examples of runtime accessibility enhancements have

included macro support [31] and pointing enhancement [48].

The SWAT framework requires rooting a device for an

accessibility service to obtain system-level instrumentation

of content and events [32], but rooting is a significant

security risk and also presents a technical expertise barrier.

Recent research in interaction proxies demonstrates a strategy

for runtime accessibility repair and enhancement without

rooting a phone, without requiring an app’s source code,

preserving all capabilities of a phone’s built-in accessibility

infrastructure [47]. These techniques modify interaction

using floating windows inserted between an app’s original

interface and the manifest interface a person perceives and

manipulates, deciding how to coordinate and modify

interaction with the added floating windows according to

information available via standard platform accessibility

APIs. The robust annotation techniques we develop in this

paper are also based entirely on information available via

standard platform accessibility APIs, offering the potential

710 ESPN app

This interface includes 6 elements with missing

or misleading labels for use by a screen reader.

TalkBack allows end-users to add custom labels

to only 2 of the elements (shown in green).

We develop new annotation methods that allow

developers to repair all 6 elements.

Figure 1: Missing and misleading labels are a common and

important accessibility issue that can be addressed by new

approaches to robust annotation for accessibility repair.

for broad deployment. Later sections demonstrate several

case studies of runtime accessibility repairs implemented

using a combination of annotations and interaction proxies.

Screen and Element Identifiers

As noted in the introduction, social annotation on the web has

generally been implemented via the combination of a URL

(i.e., indicating the context in which an annotation is applied)

and an XPath (i.e., within the context of the URL, indicating

which element is annotated). This strategy cannot be directly

applied in mobile apps because the various screens of an

app lack robust identifiers (i.e., the equivalent of a URL).

Robust annotation of mobile apps therefore requires both:

1) methods for identifying a screen within an app, and

2) methods for identifying specific elements within that screen.

Prior research exploring screen identifiers has not been

motivated by runtime interface modification and is

generally inappropriate for that purpose. For example, Flow

is an Android developer toolkit that allows naming interface

states, navigating between them by name, and remembering

the history of states [37]. However, such a toolkit must be

integrated by an app’s developer and cannot be used to

reason about screens as part of an external repair.

The Rico project developed a large dataset of mobile app

designs, gathered by capturing data during crawls of mobile

apps [7]. Rico encounters a screen identification problem in

determining whether an interaction during a crawl results in

an app entering a new interface state or a state that has

previously been captured. They define a context-agnostic

similarity heuristic that compares two screens based on: 1) the

number of pixels that differ in the two screen images, and

2) the number of differences when comparing the values of

ViewIDResourceName for elements of the two screens. Two

screens were considered the same if both were below

manually-tuned thresholds, requiring the same value for

99.8% of pixels and all but 1 ViewIDResourceName value.

These thresholds resulted in an estimated 9% error rate

(6% error incorrectly determining two screens were the same,

3% error incorrectly determining two screens were different).

Rico’s use of pixel comparison is appropriate for crawling,

but problematic for runtime modification (e.g., it requires

additional permissions, can present performance challenges).

Other mobile app crawls similarly attempt to minimize

revisitation of known screens by testing for similarity. For

example, DECAF and PUMA define a generic feature vector

encoding the structure of a screen’s interface hierarchy,

then use a cosine-similarity metric to determine screen

equivalence according to a threshold [21,26]. An evaluation

in DECAF with a .92 threshold estimated a 20% error rate

(including 8% error incorrectly determining two screens were

the same and 12% error incorrectly determining two screens

were different). The threshold can be varied to obtain different

tradeoffs between thoroughness and speed of a crawl, but a

developer cannot otherwise correct either class of error.

In contrast to both of the above, the screen identification

methods we develop in this paper: 1) use more information

in the structure of the interface hierarchy to reduce overall

error, and 2) allow the developer of an accessibility repair

to explicitly correct any errors in screen identification to

ensure robust annotation for runtime interface modification.

Automated testing tools address a need to be in a known state

by executing pre-defined interaction sequences that bring an

app to known screens (e.g., [1,18,36]). Because the developer

of a test knows what screen will be active in each step of that

test, they can reference elements of that screen. For example,

UiSelector is an element identifier used in Android tools [19],

specifying elements by properties such as ContentDescription,

ClassName, State information, Text value, and location in an

interface hierarchy. Within the context defined by a screen

identifier, we use a similar approach to element identifiers so

that we leverage developer familiarity with this approach.

ANDROID BACKGROUND

This section reviews several Android capabilities. We first

discuss why existing capabilities are inappropriate for robust

annotation, then provide background on accessibility

services and Android’s existing limited repair capabilities.

Android’s accessibility services expose a WindowId for each

View. Intended to support input interactions across multiple

processes, WindowId is not stable (i.e., it will change each

time an app is launched). It is therefore inappropriate as an

identifier for storing annotations for use in future sessions.

When available, Android’s accessibility services also expose

a ViewIdResourceName for each View. ViewIdResourceName

is Android’s primary approach to a robust identifier (e.g., to

be used in automated testing). Unfortunately, it is optional

and often not specified by an app developer. When

specifying an app’s layout in an XML layout file, including a

ViewIdResourceName allows a developer to obtain a reference

to that element at runtime (i.e., similar to web programming

practices of accessing an element according to an id attribute).

However, app developers commonly create interface elements

directly in code, obtain direct references to those elements, and

therefore see no reason to specify a ViewIDResourceName.

ViewIDResourceName is also not required to be unique, and

the same value may be used by multiple elements in different

contexts (e.g., elements in different screens of an app).

ViewIDResourceName is therefore also not an adequately

available and robust identifier for annotating Android elements.

Android allows an accessibility service to capture an image

of the screen if a person grants screenshot permission to the

service. A person may refuse this permission. Apps can also

specify a FLAG_SECURE to disable screen capture, a

common practice in apps that contain sensitive information

(e.g., in banking apps). Prior research has examined

pixel-based analysis and annotation (e.g., [8,9,10,20,46]), but

the application of those techniques in mobile apps is limited

by potential lack of access to screenshots and concerns for

mobile performance challenges in pixel-based analysis.

Our approach focuses on using information available via the

standard Android accessibility APIs. Each interface element

is represented as an AccessibilityNode that exposes

properties of that element (e.g., ClassName, AvailableActions,

Text, ContentDescription). Each AccessibilityNode can also

access its parent and any children, allowing us to obtain and

consider the tree of all interface elements in a screen.

As noted in our introduction, Android’s TalkBack screen

reader allows adding custom labels to elements. When a

person navigates to an element without alternative text, they

may perform a gesture to open the “local context menu”,

find the “add label” option, and enter a label for that element.

Current support for interactive correction has several

limitations: 1) It is often difficult for a person with a visual

impairment to know the correct label for an unlabeled element,

which can require trial and error or seeking assistance from

another person. 2) TalkBack support for correction applies

only to ImageButton or ImageView elements, which must

have a ViewIDResourceName assigned by the app developer.

3) TalkBack does not allow replacing an existing label,

even if it is incorrect or misleading. Improved support could

enable significant advances relative to such limitations

(e.g., greater ability to annotate elements, new ability to share

robust annotations among the many people using an app).

APPROACH AND SYSTEM OVERVIEW

Our focus is on developing an approach to robust annotation

of mobile app interface elements. Figure 2 overviews our

approach, currently implemented in a set of related tools.

Later sections discuss details of our approach and our current

tools in more detail, while also emphasizing that different

tools can be composed to implement the overall approach.

Beginning from the left of Figure 2, a developer implementing

an accessibility repair first captures screens they would like

to annotate within an app. We have developed a capture

tool that can be used for this, implemented as an Android

accessibility service. With the tool running in the

background, the developer visits each screen that will be

annotated. A software button added by the tool then allows

capturing a current screen (i.e., a screen image and a

snapshot of the current AccessibilityNode hierarchy).

Collection will often include multiple captures of the same

screen, as illustrated by color and shape in Figure 2. This can

occur when a screen is visited multiple times during collection,

or when a screen is captured with different content (e.g., the

same Yelp rating screen captured for different restaurants).

The developer of a repair identifies template screens that

correspond to unique screens in the app. A template tool

displays unique template screens in a row, with captured

variations displayed in the column underneath each template.

The tool applies our current screen equivalence heuristics, as

discussed and evaluated in later sections, so that templates

are automatically identified. A developer therefore only

needs to inspect and potentially correct identified templates.

A developer then authors annotations using a combination

of a screen identifier for the template screen in which an

annotation applies, an element identifier for the annotated

element within that screen, and the metadata to be associated

with that element. We have developed an annotation tool to

support authoring annotations. It displays the screen image,

uses AccessibilityNode data to generate an element identifier

when a developer selects an element in the image, provides

highlighted feedback on elements that will be selected as a

developer edits an element identifier, and allows inputting

JSON-formatted metadata to be included in an annotation.

A developer can then create an accessibility service that uses

annotations for the runtime repair of accessibility issues on

end-user devices. We have developed a runtime library that

supports comparing the current screen of an app against

template screens for that app. If the current screen matches a

template, the library further supports testing element identifiers

of annotations against the current screen. The accessibility

service can then use matching annotations in applying its

runtime repairs. Later sections discuss three example

services we have implemented using this approach.

Supporting a Range of Accessibility Repair Scenarios

Our approach and tools can support a variety of scenarios

for a developer implementing annotation-based accessibility

repair. Two example scenarios can include: 1) targeted repair

in one or two screens of an app, or 2) more general-purpose

repair of a class of errors across many different apps.

In the first scenario, a developer might decide to modify the

navigation order within a specific screen of a specific app

(e.g., in the “file explorer” screen of the Dropbox app). The

developer can open the app, visit the screen to be repaired,

and capture its data. The developer can then inspect that

data in our annotation tool, obtain a screen identifier for the

“file explorer” screen, and obtain element identifiers for

elements to be modified. The developer could then implement

Figure 2: We develop and evaluate new methods for robust annotation of mobile app interface elements appropriate for

runtime accessibility repair, together with end-to-end tool support for developers implementing accessibility repairs.

a custom accessibility service that: 1) uses our runtime

library to detect when the app’s context matches the “file

explorer” screen identifier, 2) obtains references to interface

elements in the screen using their element identifiers, and

3) uses the references to re-order navigation in that screen.

In the second scenario, the developer may find they want to

extend their repair to other apps in which people report the

same type of accessibility issue. Instead of developing many

such specialized repair services, the developer can generalize

their repair service. They can remove the use of specific

screen identifiers and element identifiers, instead defining an

annotation type and modifying their code to repair navigation

according to any annotations available for the current screen.

This might be sufficient for their needs, they might extend our

annotation tool to make it easier to author such annotations,

or they might examine new approaches to supporting a

community of interested people in annotating many apps.

IMPLEMENTING ROBUST ANNOTATION

Annotation is implemented using a combination of a screen

identifier and an element identifier. A screen identifier

corresponds to a template screen, and a set of screen

equivalence heuristics are used in both: 1) defining template

screens (i.e., determining whether a screen is a variation of an

existing template screen or distinct from existing templates),

and 2) runtime identification of screens (i.e., determining

whether the current screen matches a screen identifier).

This section discusses each of these key components.

Screen Identifier

A screen identifier corresponds to a template screen and any

variations of that screen, where a variation informally has

the same screen structure with minor differences in content

(e.g., images, text, number of items in a list). Annotations

applied to a template will also apply to any variations,

which both: 1) minimizes effort that might otherwise be

spent annotating many different versions of a screen, and

2) allows our approach in screens containing dynamic

content that could not otherwise be feasibly annotated.

A set of template screens is initialized with the first captured

screen (i.e., a single template with no variations). Each

screen is then compared against the set of current templates

using screen equivalence heuristics. If a screen is equivalent

to an existing template, it is added as a variation. Otherwise,

the screen is used as a new template. Although a capture

includes both a screen image and accessibility data, the image

is used only for developer inspection and annotation. Screen

equivalence heuristics must be based in the accessibility

data, because the image will not be available at runtime.

A developer may also use any variation as the representative

screen for a template, as all of the variations are equivalent.

At runtime, an accessibility service can capture accessibility

data for a screen and use our runtime library to compare

that screen against the set of template screens for that app.

This uses the same screen equivalence heuristics. If a match

is found, annotations associated with that template screen

are considered relevant to the current screen of the app.

Our template tool generates a unique and random screen

identifier for each template screen (e.g., “screen_1520907”).

A developer may also associate a human readable identifier

with the screen identifier (e.g., “file explorer”), while

ensuring human readable names are unique within an app.

Identifiers can then be used with our runtime library to detect

a screen (e.g., for a repair to the “file explorer” screen).

Element Identifier

A developer can then reference elements in a template screen

using techniques familiar in Android testing frameworks

(i.e., UiSelector and XPath selectors). Our implementation

of these selectors also differentiates between stable and

dynamic properties. Stable properties are unlikely to change

between screen content updates (i.e., between variations),

including ClassName, Depth, IsLeaf, and ViewIdResourceName.

Dynamic properties are more likely to change, including

ContentDescription, Location, NumberOfChildren, Size, and

Text. The current set of properties could be extended if

necessary or if future versions of the Android Accessibility

APIs expose additional properties of interface elements.

Our annotation tool also automatically generates a unique

and random element identifier for each element in a template

screen (e.g., “element_59401”). Each default element identifier

corresponds to a selector including the element’s path in the

hierarchy and its stable properties. A developer can verify

the default selector by using the annotation tool to inspect

how it applies in each variation. If necessary, a developer

can edit the default selector, again inspecting how it applies

in each variation. They may also associate a human readable

name with an element identifier (e.g., “menu button”).

At runtime, an accessibility service can use our runtime

library to obtain a reference to an interface element using

either an element identifier or a supported selector.

Screen Equivalence Heuristics

Annotation requires screen equivalence heuristics for

determining a set of template screens for annotation and

determining whether the active screen of an app matches

one of those templates. As previously noted, we rely only

on information available via standard Android accessibility

APIs, so that: 1) our runtime library does not require rooting

end-user devices, and 2) our runtime library does not require

pixel-based analysis of screen images, which may be

unavailable and may present performance challenges in a

mobile app. Our heuristics are instead based in two key

insights regarding identification of template screens.

First, contexts where Android identifiers fail to correspond to

a meaningful notion of a screen are not random (i.e., are not

well described by ignoring any one ViewIdResourceName

nor by treating them as noise in a similarity metric). Instead,

they are often systematic, resulting from developer behaviors

(e.g., failing to provide an identifier, copy-pasting code

resulting in non-unique identifiers) or standard toolkit

behaviors (e.g., widgets that dramatically change what is

presented in a screen with only subtle indications of that

change in the accessibility API information for the screen).

We develop a set of heuristics based in such systematic

behaviors, and we evaluate our heuristics in a later section.

We note these heuristics can also be updated and extended

as we gather additional data or as toolkit behaviors evolve

(e.g., introducing new widgets that require adjustments).

Second, the two types of error in screen equivalence have

different implications. We define a FalseSame error as

incorrectly determining two screens are the same. This can

result in what should be a distinct template screen instead

being considered a variation of an existing template

(i.e., requiring developer correction), or it can also result in a

runtime screen matching an incorrect template and retrieving

incorrect annotations. We define a FalseDifferent error as

incorrectly determining two screens are different. This can

result in additional annotation overhead through the creation

of spurious templates that could be combined, or it can result

in a screen not being annotated at runtime. Our techniques

allow the developer of an accessibility repair to correct either

form of error, but we design our default screen equivalence

heuristics to minimize FalseSame errors. This corresponds to

preferring a need for greater annotation effort over the

possibility of annotations being incorrectly applied at runtime.

Our current screen equivalence is implemented using eight

heuristics, each based on a specific app developer practice

or toolkit behavior. Heuristic 1 makes an early determination

based on explicit app developer indication that screens differ.

Heuristics 2 to 5 account for common interface structures that

require special consideration, transforming the accessibility

API representation to better support comparison. Heuristic 6

then filters items that should not be considered in comparison.

Given these special case checks and adjustments, Heuristic 7

then makes the primary comparison based on values of

ViewIdResourceName in the two screens. Heuristic 8 then

further reduces FalseSame errors by comparing values of

ClassName in the two screens. After discussing each heuristic,

we discuss how a repair developer can correct any errors.

1. Compare ActivityName: If two screens both have an

ActivityName value that was specified by the developer,

but not the same value, the screens are considered different.

This heuristic is intended to reduce FalseSame errors.

2. Check for Navigation Drawer: This common Android

element presents a menu above an interface by dimming

and preventing interaction with elements under the

menu. When this heuristic detects an open navigation

drawer, it transforms the representation of the interface

so remaining heuristics apply only to contents of the

menu (i.e., ignoring the occluded background elements).

If one screen contains an open navigation drawer, but

the other does not, the screens are considered different.

This heuristic is intended to reduce FalseDifferent errors.

3. Check for a Floating Dialog: This common Android

element also occludes elements underneath it. This

heuristic similarly detects a floating dialog, transforms

the representation so remaining heuristics apply only to

contents of the floating dialog, and considers two

screens different if only one contains a floating dialog.

This heuristic is intended to reduce FalseDifferent errors.

4. Check for Tab Layout: Android’s tab layout preloads the

content of each tab, presenting the same tree to the

Android accessibility APIs regardless of which tab is

selected. When this heuristic detects a tab layout, it uses a

binary Selected property of the active tab to transform the

representation so remaining heuristics apply according to

the content of that active tab. It also considers two

screens different if only one contains a tab layout. This

heuristic is intended to reduce FalseSame errors.

5. Check for Radio Button Group with a Multi-Page View:

This alternative approach to tab-like functionality similarly

results in an Android accessibility API tree structure that

does not adequately correspond to the selected radio button.

This heuristic uses a binary Checked property of the active

radio button to transform the representation so remaining

heuristics apply according to content of the active view.

This heuristic is intended to reduce FalseSame errors.

6. Visibility Filter: Common Android container elements

expose elements in their accessibility API structure that

are outside the bounds of the screen (e.g., WebView), so

we transform the representation by filtering to include

only visible elements (i.e., elements with boundsInScreen

values that correspond to non-zero area within the screen).

This heuristic is intended to reduce FalseSame errors.

7. Compare ViewIdResourceName: This stable property of

each element will not change when an element’s content

is modified. If the set of ViewIdResourceName values

are not the same, the screens are considered different.

This heuristic is the primary comparison based on any

transformations applied in the previous heuristics.

8. Compare ClassName: As with ViewIdResourceName, this

stable property will not change when an element’s content

is modified. We consider this additional stable property

to helps address situations where ViewIdResourceName

is not informative. If the set of ClassName values are

not the same, the screens are considered different.

This heuristic is intended to reduce FalseSame errors.

Our evaluation shows these heuristics are highly effective,

and they can be extended as additional data suggests new

heuristics. However, any approach will sometimes require

correction by the developer of a repair. For a FalseSame error,

a developer can write an element selector that differentiates

the two screens. Any future screens that match the original

template will then be separated into two templates based on

whether they match the selector. For a FalseDifferent error, a

developer combines the two template screens and their

variations. Any future screens will be considered equivalent

if they match either of the original templates. Although we

have not found it necessary, we note that multiple such

corrections could be composed as needed.

Annotation Storage

The tasks of inspecting, editing, and using annotations

require: 1) collections of template screens, each including a

screen image, associated accessibility data, and a screen

identifier used for referencing that template screen,

2) variations associated with each template screen, 3) element

identifiers for each element in each template screen, and

4) annotations defined as a combination of a screen identifier,

an element identifier, and the annotation metadata to be

associated with that element of that screen. Our current

implementation stores this data in Google’s Firebase.

DATA COLLECTION AND ANNOTATION TOOLS

Our core methods for screen identifiers, element identifiers,

and screen equivalence can be applied in a variety of tools.

We have created an initial set of tools to support development

of repairs based on these methods. This section introduces

our current tools and briefly discusses potential alternatives.

Capture Tool

Implemented as an Android accessibility service, this tool

runs in the background to allow a developer to capture screens.

A developer browses to a screen they want to capture, then

presses a software button on the navigation bar. The tool

plays a confirmation sound, captures a screen image with

associated accessibility data, and uploads them to the

database. The capture tool therefore requires screenshot

permission, but our runtime tools do not (i.e., captured images

are used only used to support annotation and our runtime

tools do not use pixel-level data). If a developer wants to

capture an app that has disabled screenshot permission, they

can use a rooted device or emulator [45]. Although a

requirement to root a device is inappropriate for end-user

accessibility tools, it is more appropriate for a developer

and is the only method to circumvent FLAG_SECURE.

Typical capture will include a developer navigating through

an app, using the tool to capture different screens,

interacting with the app, and capturing variations of screens.

Template Screen Tool

This web application supports a developer inspecting and

potentially correcting identified template screens in each app.

Images of template screens are shown in the top row, with

any variations shown in a column underneath each template.

Template screens and their variations are automatically and

reliably identified using screen equivalence heuristics, so the

tool is primarily used to inspect the results, obtain screen

identifiers, make occasional corrections, and access the

annotation tool by clicking into a screen. If a correction is

needed, the tool supports authoring a selector or combining

templates (i.e., as discussed in Screen Equivalence Heuristics).

Annotation Tool

This web application supports a developer in authoring

annotations on a template screen. It is currently accessed by

clicking a screen image in the template screen tool. The tool

shows the screen image with its screen identifier and uses

captured accessibility API data to highlight elements when

a developer clicks on them. Developers can also author a

custom selector and receive feedback through highlighting

one or more elements. For each highlighted element, its

identifier and properties are shown in a list. An annotation

can be authored as JSON-formatted metadata, or a developer

can extend the annotation tool with custom functionality for

a particular class of annotation (e.g., as with customized

annotation interfaces developed in our later case studies).

Runtime Library

Our runtime library supports annotation-based accessibility

services by providing key functions for obtaining accessibility

data, identifying a screen by comparing it to a library of

templates, identifying elements in a screen, and retrieving

annotations. The library also supports listening for ViewClicked

and WindowStateChanged events, which can lead to a change

of screen structure requiring identification of the new screen.

Our library therefore supports overall management of relevant

annotations, allowing a developer to focus on the functionality

of their accessibility repair service.

Alternative Collection and Annotation Tools

Our current tools support an end-to-end annotation process

for developers, chosen as a first primary audience as we

develop tools based on this approach to annotation. We

envision future research exploring complementary approaches.

For example, an extension of our tools might support end-user

capture and annotation directly on their phone (e.g., requiring

screenshot permission during capture, but allowing end-users

to directly collect and annotate data for a repair). Future

research might also examine how to scale annotation, perhaps

drawing upon crowdsourcing and friendsourcing techniques

developed in other contexts (e.g., [35,40,41]). Our approach

to screen equivalence could be included in tools for automated

exploration of mobile apps (e.g., [2,21,27]), and such tools

could benefit the capture of data for accessibility repair.

EVALUATION OF SCREEN EQUIVALENCE HEURISTICS

To evaluate the effectiveness of our current screen equivalence

heuristics, we recruited 5 developer participants to capture

screens and identify templates in a dataset of real-world

mobile apps. Our sample of mobile apps was 5 top free

apps in each of 10 categories. 5 participants were recruited

from our department, as our primary criterion was to recruit

experienced developers familiar with mobile apps.

Each session began with simple training, showing participants

how to capture a screen and how to use the template screen

tool to examine identification of template screens in an app.

We then asked each participant to capture screens for all of

the major features in 10 apps, and if possible to capture one

or more variations for each screen. After completing capture

for each app, the participant was asked to use the template

screen tool to examine the identification of template screens

in their capture of that app and to correct any errors.

Because our focus was on data collection, participants used

a simplified version of the tool that allowed dragging screens

to re-arrange them, without a need to identify a selector that

could allow the templates to be used with our runtime tools.

When a participant completed capture and identification of

template screens for the 10 assigned apps, we asked them to

examine template screens in another 10 apps captured by other

participants. We therefore obtained 2 developer judgments

regarding the template screens and variations within each

app, and the lead researcher resolved the limited number of

disagreements (a total of 12 disagreements in 9 apps).

Participants were compensated with a $20 gift card. Data

collection took about 5 to 10 minutes for each app.

Participants collected a total of 2,038 screens from 50 apps.

Following the same procedure used in [7], we examine

equivalence in the 42,504 pairs of screens that result from

considering all pairs within each app. Table 1 summarizes

the improvement associated with each heuristic. Because our

primary heuristic compares values of ViewIdResourceName,

we report the effectiveness of other heuristics in terms of

improvement relative to this. Considering only

ViewIdResourceName in our dataset results in a FalseSame

error rate of 3.10% and a FalseDifferent error rate of 2.28%.

Adding each heuristic reduces these, and the comparison of

ViewIdResourceName following all previous heuristics

results in a FalseSame error rate of 0.44% and a

FalseDifferent error rate of 0.83%. Comparison of ClassName

then further reduces the FalseSame error rate to 0.09% while

slightly increasing the FalseDifferent error rate to 0.92%.

Overall this is a 97% reduction in FalseSame error with a

60% reduction in FalseDifferent error, consistent with our

goal of prioritizing the minimization of FalseSame errors

(i.e., as discussed when introducing our screen equivalence

heuristics). Remaining errors can also generally be addressed

by the developer of a repair (i.e., specifying a selector or

merging templates), a capability lacking from prior

approaches to screen equivalence (e.g., [7,21,26]). Error

rates are well below the 6% FalseSame and 3%

FalseDifferent error rates in [7], though care must be taken

in comparing these rates because those numbers are based

on a different and much smaller dataset (i.e., 1044 pairs of

screens from 12 apps used to tune the equivalence

thresholds used in that work). Robust screen identifiers

should also allow a developer to author an element

identifier for any element in a screen. In contrast, we find

the TalkBack screen reader’s reliance on

ViewIdResourceName will allow it to apply a custom label

to only 13.6% of TalkBack-visited elements in this data.

Examining this data, we observe a practice of obfuscating

ViewIdResourceName. For example, the Facebook Messenger

app sets ViewIdResourceName to “name_removed” for all of

its elements. Considering only ViewIdResourceName results

in 84 FalseSame errors in this app, while our heuristics use

ActivityName, interface structure, and ClassName to reduce

this to only 2 FalseSame errors (which could then be corrected

by developer specification of an appropriate selector). We

also note approaches based entirely on ViewIdResourceName,

including the TalkBack screen reader’s support for adding

custom labels, will be completely ineffective in such an app

(i.e., because all elements have the same ViewIdResourceName).

Heuristic 8 reduces FalseSame error by checking ClassName,

but slightly increases FalseDifferent error. Examining this,

we find that advertising banners are a common cause of

increased FalseDifferent error. For example, the Abs Workout

app includes advertising elements that have different

ClassNames before and after an advertisement is loaded.

This suggests a future heuristic might filter advertising

elements, perhaps by blacklisting their ClassNames.

We also observe a small number of cases that likely cannot

be resolved using our current techniques due to an app’s

complete failure to implement a meaningful representation

via the accessibility APIs. For example, the TopBuzz app

includes a custom-implemented tab layout that does not

expose any indication of what tab is active (e.g., nothing like

the Selected or Checked properties in our current heuristics).

It also does not properly expose elements of all tabs to the

accessibility APIs, but instead exposes contents of the first

tab regardless of which tab is currently active. Resolving

such a complete failure may require pixel-based techniques

(e.g., as in [8,9,10,11]). Although this will require

screenshot permission at runtime, performance implications

might be addressed by limiting pixel-based analysis to only

such special-case scenarios where accessibility data fails.

CASE STUDIES OF RUNTIME ACCESSIBILITY REPAIR

This section demonstrates repair of three common types of

accessibility issues, all implemented using our approach to

robust annotation. These case studies are implemented

using interaction proxy techniques, and correspond to prior

proof-of-concept demonstrations in that research [47].

However, it was previously infeasible to scale demonstrations

beyond a handful of elements in a handful of apps, due to a

lack of methods for determining where and how to apply a

runtime repair. Integrating annotation-based techniques into

these demonstrations is an important step toward runtime

accessibility repair in mobile apps, which the next section

further examines in a set of 26 real-world apps.

Missing or Misleading Labels

As illustrated in Figure 1, many apps contain both unlabeled

elements (e.g., elements lacking a ContentDescription that

will therefore be read as “unlabeled”) and elements with

misleading labels (e.g., Figure 1’s two buttons labeled “15”).

We implemented an accessibility service that uses annotations

to repair elements with missing or misleading values of

ContentDescription. A developer uses the annotation tool to

identify an element in need of label repair (e.g., by clicking it

in the image, by writing a custom selector), then uses a text

field to enter an appropriate ContentDescription, which the

tool stores as an annotation. At runtime, the accessibility

 Error Rate (%)

 Heuristic FalseSame FalseDiff

- Only ViewIdResourceName 3.10 2.28

1 ActivityName 2.51 2.28

2 Navigation Drawer 2.51 1.06

3 Floating Dialog 2.51 0.83

4 Tab Layout 1.55 0.83

5 Radio Button Group 1.48 0.83

6 Visibility Filter 0.44 0.83

7 ViewIdResourceName as above as above

8 ClassName 0.09 0.92

Table 1. Improvements in error rates resulting from the

addition of each of our current screen equivalence heuristics.

services detect whether the current screen includes any

annotations, then uses interaction proxy techniques to repair

how annotated elements are read by the screen reader.

Navigation Order Issues

The navigation order of interface elements is important to

many people (e.g., a person using swipe gestures to navigate

interface elements with a screen reader, a person using a

switch interface), but many apps have navigation orders

that can make them difficult to use. For example, the

navigation order for the Dropbox app begins with the “add”

button and then requires navigating through all files in the

current folder (i.e., a list of arbitrary length) before

accessing the “menu”, “select”, or “more” buttons.

We implemented an accessibility service that uses annotations

to repair navigation order within a screen. A customized

annotation interface shows the current navigation order and

allows developers to modify the order by moving elements in

a list. The resulting navigation order is stored as an annotation

associated with the screen, which our accessibility service

detects at runtime and uses to correct the navigation order.

Inaccessible Customized Widgets

Whenever a developer creates a custom interface element,

they also need to write additional code to expose appropriate

accessibility hierarchy and context [15]. Unfortunately, many

developers fail to do this, so these custom elements can be

difficult or impossible to use with an accessibility service.

For example, custom rating widgets found in Yelp and many

other apps are often inaccessible (e.g., the Yelp rating widget

is exposed as a TextView and does not allow a person using

a screen reader or switch interface to enter a rating).

We implemented an accessibility service that uses annotations

to repair some forms of inaccessible customized widgets.

Figure 2 illustrates our enhancement of the annotation tool

that supports rubberband selection to define clickable areas

within an element, storing a list of these areas with a

ContentDescription for each as an annotation on the element.

At runtime, the accessibility service uses these annotations

to create the missing accessibility API representations. This

approach can only repair relatively simple custom elements,

but also suggests an approach to more sophisticated repairs.

EVALUATION OF RUNTIME REPAIR

Our case studies build upon prior demonstrations of

accessibility repairs that have received positive feedback,

including feedback in two rounds of studies with 14 people

with visual impairments who use screen readers [47]. The

end-user experience with repair is the same as in this prior

research, but prior demonstrations were limited to a handful

of apps chosen by the research team and custom code for

each repair. Our current evaluation therefore focused on

examining the application of our selected categories of

repair to accessibility issues in real-world apps. We first

worked with a participant who uses a screen reader, repairing

accessibility issues they identified as problematic. We then

collected and repaired issues in a larger set of apps.

Participant Feedback on Accessibility Repairs

To gather initial feedback on accessibility repairs implemented

in our case studies, we interviewed a person who is blind and

has used an Android screen reader for 6 years. Via email prior

to the interview, we described the three types of accessibility

issues addressed in our case studies and asked if he found

these issues in apps he frequently used. He replied to report

issues in 6 apps. We then spent an hour capturing screens

and authoring annotations to repair the accessibility issues

he reported, followed by an additional hour examining the

apps to find and repair issues he had not mentioned. We

note the runtime repair of accessibility issues in 6 different

apps would be infeasible in prior approaches requiring

custom code to repair to specific elements in specific apps

(e.g., prior repair demonstration in interaction proxies [47]).

During the interview, we first asked the participant to show

how he normally used each app and how it was inaccessible.

We then enabled our accessibility repair service and asked

him to revisit the interactions he had showed us. After he

experienced all repairs to the accessibility issues he reported,

we disabled our repair service and guided him to screens

with additional accessibility issues he had not mentioned.

We then re-enabled the repair service, so he could experience

the difference. After each app, we asked him: 1) to what

extent the accessibility issues are a barrier; 2) if a repair

service would change how he uses the app; 3) whether the

repair service addressed all accessibility issues he mentioned.

At the end of the interview, we asked for his overall opinion

and thoughts regarding our approach and its potential.

Overall the participant expressed frustration with accessibility

issues: “These (accessibility) barriers make me not want to

use them (apps). I'm a customer, just happened to be blind,

but I’d like to use these services.” He confirmed our repairs

addressed the issues he reported, as well as additional issues

in the same apps. He described how repairs would change

how he uses apps, and might help more people: “Having the

annotation available and making the app accessible make

me more likely to use the app. I'd like to be able to use more

stuff and do more. Enhancing (the apps) to be more usable

and accessible…that makes it better for everybody.”

One app he identified was BECU (i.e., a local credit union).

The app is implemented with cocos2dx, a game engine that

was probably chosen for its ability provide high-quality

animations. It unfortunately exposes very limited information

to the Android accessibility APIs. On the login screen,

TalkBack cannot navigate focus to the input fields for the

account name or password. This app did include support for

Android’s voice assistant, which speaks a list of available

options (e.g., “enter the password”), then requires double

tapping and speaking an option. The participant objected

that this solution did not meet accessibility expectations:

“that’s not what I want, and it is not the way it should be

working…I should just be able to double tap on the

username and type it”. He also noted that speaking

introduces privacy concerns: “I often wear headphones and

(keep) the screen off so that nobody could hear what's

going on”. We repaired the inaccessible login screen by

defining a clickable area and defining a description for each

input field. We did not continue repair beyond the login

screen, both because we did not have credentials to use

during capture and because we did not want to ask the

participant to expose his personal information in testing.

The participant also identified the At Bat app, which features

listening to live streams of baseball games. However, after

paying for a subscription, the participant found he could not

access the streams. The “play” button is unlabeled, and a

feed source must be selected to enable the unlabeled “play”

button. Without instruction, this interaction is extremely

difficult for a person using a screen reader. The participant

was frustrated by the player: “it’s a big barrier that I am

not able to really use that app, it makes me frustrated and I

don't understand why they are unlabeled…I don't want to

open some random buttons”. We annotated the unlabeled

buttons with appropriate labels, repaired the navigation order

to more easily move to the audio player, and added an

instruction to select a feed. The participant described how

these repairs would make the app useful: “I would actually

use it and I paid for it…Right now, I'm not using it at all.”

Repairs in Additional Mobile Apps

As a complement to our in-depth exploration with the above

participant, we made repairs in 20 additional apps. 10 were

identified as having accessibility issues by participants in

accessibility-related forums [16,23,38], and 10 were selected

from the top downloaded apps in the Google Play Store.

Details regarding the accessibility issues we repaired in a

total of 26 apps are available at https://github.com/appaccess.

Across 24 apps, we found and repaired 115 labels that were

missing and 46 labels that were misleading. Across 18 apps,

we found and repaired 29 navigation order issues. Across

11 apps, we found and repaired 12 inaccessible custom

widgets. We include examples of these repairs in the

supplementary video.

Because runtime repair of mobile accessibility issues is a

relatively new capability (e.g., [32,47]), and because prior

methods have required custom code specific to each repair,

we believe this is the largest existing set of runtime repairs

of mobile app accessibility issues, thereby providing support

for the potential of annotation-based accessibility repair.

CURRENT LIMITATIONS

Our evaluation found that a relatively small number of apps

expose an accessibility API representation that

fundamentally lacks vital information (e.g., screens in

TopBuzz on page 8, the BECU app on page 9). Our current

screen equivalence heuristics cannot be effective in such

circumstances. Careful authoring of selectors based on the

available information might allow a motivated developer to

differentiate screens and author repairs, but other

approaches may also be beneficial. For example, we have

overall avoided pixel-based analysis, but might make

limited use of such techniques in situations like these which

cannot otherwise be addressed.

Currently, we examine capture and annotation of an app

within a single version of that app running on a single phone

(i.e., at a single screen resolution and in portrait orientation).

We are not aware of any prior research in screen equivalence

that has addressed this limitation, but future research toward

large-scale deployment of annotation-based repair will need

to consider different versions and renderings of the same app.

Our approaches should be promising, as they do not rely upon

element location or size and large-scale changes can likely be

modeled as additional template screens. Scrolling, animation,

and dynamic introduction of new elements are also classic

difficulties in runtime interpretation and modification. Our

runtime tools currently address this by identifying a screen

when it first appears, then monitoring events that might

indicate a change in the active screen. This has been

effective, but additional approaches may be necessary.

Our current implementation is for Android. Although it is not

the most popular mobile platform among people who use

screen readers, its open platform both enables our annotation

techniques and allows advances to be directly deployed in

accessibility services. Our overall strategy (i.e., identifying

components and patterns that lead to screen equivalence errors)

is likely to generalize to additional mobile platforms.

CONCLUSION

This paper has introduced an approach to robust annotation

of mobile apps, using techniques appropriate for runtime

accessibility repair. We have presented our underlying

methods in terms of screen identifiers, element identifiers,

and screen equivalence heuristics. We have developed an

initial set of tools based on these methods, focused on

developer implementation of accessibility repair services.

We then evaluated our screen equivalence heuristics,

presented our case studies applying annotation in runtime

accessibility repair, and examined these case study

implementations in repairing real-world accessibility issues.

Supporting materials (e.g., code and screen data) are

available at: https://github.com/appaccess.

We have demonstrated an initial set of annotation tools, but

there are many more possibilities. For example, our approach

might be integrated directly into Android’s core accessibility

services (i.e., the TalkBack screen reader and Switch Access).

Annotation could address limitations of these tools in relying

upon ViewIdResourceName. Future research could also

explore tools that do not require developer-level expertise,

including crowdsourcing or friendsourcing approaches.

Robust approaches to mobile app screen equivalence and

annotation can also have applications beyond accessibility,

including interface testing, large-scale collection and analysis

of mobile apps [7,21,33], and task automation [25]. Overall,

we believe many new tools can be developed using the

underlying methods developed in this initial research.

ACKNOWLEDGEMENTS

This research was funded in part by the National Science

Foundation, under award IIS-1702751 and through a Graduate

Research Fellowship, and by a Google Faculty Award.

REFERENCES

1. Appium. Appium. http://appium.io/

2. Tanzirul Azim and Iulian Neamtiu. (2013). Targeted

and Depth-first Exploration for Systematic Testing of

Android Apps. Proceedings of the ACM SIGPLAN

International Conference on Object Oriented

Programming Systems Languages & Applications

(OOPSLA 2013), 641–660.

http://doi.org/10.1145/2544173.2509549

3. Jeffrey P. Bigham and Richard E. Ladner. (2007).

AccessMonkey: A Collaborative Scripting Framework

for Web Users and Developers. Proceedings of the

Web for All Conference (W4A 2007), 25–34.

http://doi.org/10.1145/1243441.1243452

4. Nilton Bila, Troy Ronda, Iqbal Mohomed, Khai N

Truong, and Eyal De Lara. (2007). PageTailor:

Reusable End-User Customization for the Mobile Web.

Proceedings of the International Conference on Mobile

Systems, Applications, and Services (MobiSys 2007).

http://doi.org/10.1145/1247660.1247666

5. Michael Bolin, Matthew Webber, Philip Rha, Tom

Wilson, and Robert C. Miller. (2005). Automation and

Customization of Rendered Web Pages. Proceedings of

the ACM Symposium on User Interface Software and

Technology (UIST 2005).

http://doi.org/10.1145/1095034.1095062

6. Tsung-Hsiang Chang, Tom Yeh, and Rob Miller.

(2011). Associating the Visual Representation of User

Interfaces with Their Internal Structures and Metadata.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST 2011), 245–256.

http://doi.org/10.1145/2047196.2047228

7. Biplab Deka, Zifeng Huang, Chad Franzen, Joshua

Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,

and Ranjitha Kumar. (2017). Rico: A Mobile App

Dataset for Building Data-Driven Design Applications.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST 2017), 845–854.

http://doi.org/10.1145/3126594.3126651

8. Morgan Dixon and James Fogarty. (2010). Prefab:

Implementing Advanced Behaviors Using Pixel-Based

Reverse Engineering of Interface Structure.

Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI 2010), 1525–

1534. http://doi.org/10.1145/1753326.1753554

9. Morgan Dixon, Gierad Laput, and James Fogarty.

(2014). Pixel-Based Methods for Widget State and

Style in a Runtime Implementation of Sliding Widgets.

Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI 2014), 2231–

2240. http://doi.org/10.1145/2556288.2556979

10. Morgan Dixon, Daniel Leventhal, and James Fogarty.

(2011). Content and Hierarchy in Pixel-Based Methods

for Reverse Engineering Interface Structure.

Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI 2011), 969–978.

http://doi.org/10.1145/1978942.1979086

11. Morgan Dixon, A. Conrad Nied, and James Fogarty.

(2014). Prefab Layers and Prefab Annotations:

Extensible Pixel-Based Interpretation of Graphical

Interfaces. Proceedings of the ACM Symposium on

User Interface Software and Technology (UIST 2014),

221–230. http://doi.org/10.1145/2642918.2647412

12. James R Eagan, Michel Beaudouin-Lafon, and Wendy

E Mackay. (2011). Cracking the Cocoa Nut: User

Interface Programming at Runtime. Proceedings of the

ACM Symposium on User Interface Software and

Technology (UIST 2011), 225–234.

http://doi.org/10.1145/2047196.2047226

13. W. Keith Edwards, Ian Smith, Scott E. Hudson, Joshua

Marinacci, Roy Rodenstein, and Thomas Rodriguez.

(1997). Systematic Output Modification in a 2D User

Interface Toolkit. Proceedings of the ACM Symposium

on User Interface Software and Technology (UIST

1997), 151–158. http://doi.org/10.1145/263407.263537

14. Google. Accessibility Scanner.

https://play.google.com/store/apps/details?

id=com.google.android.apps.accessibility.auditor

15. Google. Building Accessible Custom Views.

https://developer.android.com/guide/topics/ui/accessibi

lity/custom-views.html#virtual-hierarchy

16. Google. Eyes-free Forum.

https://groups.google.com/forum/#!forum/eyes-free

17. Google. Making Apps More Accessible.

https://developer.android.com/guide/topics/ui/accessibi

lity/apps.html#touch-targets

18. Google. Monkeyrunner.

https://developer.android.com/studio/test/monkeyrunne

r/index.html

19. Google. UiSelector.

https://developer.android.com/reference/android/suppo

rt/test/uiautomator/UiSelector.html

20. Tovi Grossman, Tovi Grossman, Ravin Balakrishnan,

and Ravin Balakrishnan. (2005). The Bubble Cursor:

Enhancing Target Acquisition by Dynamic Resizing of

the Cursor’s Activation Area. Proceedings of the ACM

Conference on Human Factors in Computing Systems

(CHI 2005), 281–290.

http://doi.org/10.1145/1054972.1055012

21. Shuai Hao, Bin Liu, Suman Nath, William G J

Halfond, and Ramesh Govindan. (2014). PUMA:

Programmable UI-Automation for Large-Scale

Dynamic Analysis of Mobile Apps. Proceedings of the

International Conference on Mobile Systems,

Applications, and Services (MobiSys 2014), 204–217.

http://doi.org/10.1145/2594368.2594390

22. Yun Huang, Brian Dobreski, Bijay Bhaskar Deo,

Jiahang Xin, Natã Miccael Barbosa, Yang Wang, and

Jeffrey P. Bigham. (2015). CAN: Composable

Accessibility Infrastructure via Data-Driven

Crowdsourcing. Proceedings of the Web for All

Conference (W4A 2015), 2.

http://doi.org/10.1145/2745555.2746651

23. InclusiveAndroid. App and Game Categories.

https://www.inclusiveandroid.com/?q=app-and-game-

categories

24. Shinya Kawanaka, Yevgen Borodin, Jeffrey P.

Bigham, Darren Lunn, Hironobu Takagi, and Chieko

Asakawa. (2008). Accessibility Commons: A Metadata

Infrastructure for Web Accessibility. Proceedings of

the ACM Conference on Computers and Accessibility

(ASSETS 2008), 153–160.

http://doi.org/10.1145/1414471.1414500

25. Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.

(2017). SUGILITE: Creating Multimodal Smartphone

Automation by Demonstration. Proceedings of the

ACM Conference on Human Factors in Computing

Systems (CHI 2017), 6038–6049.

http://doi.org/10.1145/3025453.3025483

26. Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu.

(2014). DECAF: Detecting and Characterizing Ad

Fraud in Mobile Apps. Proceedings of the USENIX

Conference on Networked Systems Design and

Implementation (NSDI 2014), 57–70.

27. Ke Mao, Mark Harman, and Yue Jia. (2016). Sapienz:

Multi-objective Automated Testing for Android

Applications. Proceedings of the International

Symposium on Software Testing and Analysis (ISSTA

2016), 94–105.

http://doi.org/10.1145/2931037.2931054

28. Michael Nebeling, Maximilian Speicher, and Mc

Norrie. (2013). CrowdAdapt: Enabling Crowdsourced

Web Page Adaptation for Individual Viewing

Conditions and Preferences. Proceedings of the ACM

SIGCHI Symposium on Engineering Interactive

Computing System (EICS 2013).

http://doi.org/10.1145/2480296.2480304

29. Dan R Olsen Jr., Scott E Hudson, Thorn Verratti,

Jeremy M Heiner, and Matt Phelps. (1999).

Implementing Interface Attachments Representations

Based on Surface. Proceedings of the ACM Conference

on Human Factors in Computing Systems (CHI 1999),

191–198. http://doi.org/10.1145/302979.303038

30. World Health Organization. (2011). World Report on

Disability.

http://www.who.int/disabilities/world_report/2011/en/

31. André Rodrigues. (2015). Breaking Barriers with

Assistive Macros. Proceedings of the ACM Conference

on Computers and Accessibility (ASSETS 2015), 351–

352. http://doi.org/10.1145/2700648.2811322

32. André Rodrigues and Tiago Guerreiro. (2014). SWAT:

Mobile System-Wide Assistive Technologies.

Proceedings of the 28th International BCS Human

Computer Interaction Conference on HCI 2014-Sand,

Sea and Sky-Holiday HCI, 341–346.

33. Anne S. Ross, Xiaoyi Zhang, James Fogarty, and Jacob

O. Wobbrock. (2017). Epidemiology as a Framework

for Large-Scale Mobile Application Accessibility

Assessment. Proceedings of the ACM SIGACCESS

Conference on Computers and Accessibility (ASSETS

2017), 2–11. http://doi.org/10.1145/3132525.3132547

34. Daisuke Sato, Masatomo Kobayashi, Hironobu Takagi,

and Chieko Asakawa. (2009). What’s Next? A Visual

Editor for Correcting Reading Order. In Proceedings of

the International Conference on Human-Computer

Interaction (INTERACT 2009), Tom Gross, Jan

Gulliksen, Paula Kotzé, Lars Oestreicher, Philippe

Palanque, Raquel Oliveira Prates and Marco Winckler

(eds.). Berlin, Heidelberg, 364–377.

http://doi.org/10.1007/978-3-642-03655-2_41

35. Daisuke Sato, Hironobu Takagi, Masatomo Kobayashi,

Shinya Kawanaka, Chieko Asakawa, and Asakawa

Chieko. (2010). Exploratory Analysis of Collaborative

Web Accessibility Improvement. ACM Transactions

on Accessible Computing (TACCESS), 3(2), 5.

http://doi.org/10.1145/1857920.1857922

36. Selendroid. Selendroid. http://selendroid.io/

37. Square. Flow Github Repository.

https://github.com/square/flow

38. StrangelyTyped. My Brief Experiences with Android

Talkback/Accessibility.

https://www.reddit.com/r/Android/comments/3uqs6z/m

y_brief_experiences_with_android/

39. Wolfgang Stuerzlinger, Olivier Chapuis, Dusty

Phillips, and Nicolas Roussel. (2006). User Interface

Facades: Towards Fully Adaptable User Interfaces.

Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST 2006), 309–318.

http://doi.org/10.1145/1166253.1166301

40. Hironobu Takagi, Shinya Kawanaka, Masatomo

Kobayashi, Takashi Itoh, and Chieko Asakawa. (2008).

Social Accessibility: Achieving Accessibility Through

Collaborative Metadata Authoring. Proceedings of the

ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS 2008), 193–200.

http://doi.org/10.1145/1414471.1414507

41. Hironobu Takagi, Shinya Kawanaka, Masatomo

Kobayashi, Daisuke Sato, and Chieko Asakawa.

(2009). Collaborative Web Accessibility Improvement:

Challenges and Possibilities. Proceedings of the ACM

Conference on Computers and Accessibility (ASSETS

2009), 195–202.

http://doi.org/10.1145/1639642.163967

42. Desney S Tan, Brian Meyers, and Mary Czerwinski.

(2004). WinCuts: Manipulating Arbitrary Window

Regions for More Effective Use of Screen Space.

Extended Abstracts of the ACM Conference on Human

Factors in Computing Systems (CHI’EA 2004), 1525–

1528. http://doi.org/10.1145/985921.986106

43. Mosaic Design Team. (1993). Group Annotations in

NCSA Mosaic.

https://www.math.utah.edu/~beebe/support/html/Docs/

group-annotations.html

44. W3C. W3C Web Annotation Working Group.

https://www.w3.org/annotation/

45. Xposed. DisableFlagSecure.

http://repo.xposed.info/module/fi.veetipaananen.androi

d.disableflagsecure

46. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.

(2009). Sikuli: Using GUI Screenshots for Search and

Automation. Proceedings of the ACM Symposium on

User Interface Software and Technology (UIST 2009),

183–192. http://doi.org/10.1145/1622176.1622213

47. Xiaoyi Zhang, Anne Ross, Anat Caspi, James Fogarty,

and Jacob O. Wobbrock. (2017). Interaction Proxies

for Runtime Repair and Enhancement of Mobile

Application Accessibility. Proceedings of the ACM

Conference on Human Factors in Computing Systems

(CHI 2017), 6024–6037.

http://doi.org/10.1145/3025453.3025846

48. Yu Zhong, Astrid Weber, Casey Burkhardt, Phil

Weaver, and Jeffrey P. Bigham. (2015). Enhancing

Android Accessibility for Users with Hand Tremor by

Reducing Fine Pointing and Steady Tapping.

Proceedings of the Web for All Conference (W4A

2015), 29. http://doi.org/10.1145/2745555.2747277

	Robust Annotation of Mobile Application Interfaces in Methods for Accessibility Repair and Enhancement
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATed Work
	Social Annotation and Web Accessibility
	Runtime Interface Modification
	Screen and Element Identifiers

	ANDroid background
	Approach and SYSTEM OVERVIEW
	Supporting a Range of Accessibility Repair Scenarios

	implementing ROBUST ANNOTATION
	Screen Identifier
	Element Identifier
	Screen Equivalence Heuristics
	Annotation Storage

	data collection and annotation tools
	evaluation OF Screen EQUIVALENCE HEURISTICS
	Case StudIES of runtime accessibility repair
	Missing or Misleading Labels
	Navigation Order Issues
	Inaccessible Customized Widgets

	evaluation OF runtime repair
	Participant Feedback on Accessibility Repairs
	Repairs in Additional Mobile Apps

	CURRENT LIMITATIOnS
	conclusion
	ACKNOWLEDGEMENTs
	REFERENCES
	Final copy.pdf
	Robust Annotation of Mobile Application Interfaces in Methods for Accessibility Repair and Enhancement
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATed Work
	Social Annotation and Web Accessibility
	Runtime Interface Modification
	Screen and Element Identifiers

	ANDroid background
	Approach and SYSTEM OVERVIEW
	Supporting a Range of Accessibility Repair Scenarios

	implementing ROBUST ANNOTATION
	Screen Identifier
	Element Identifier
	Screen Equivalence Heuristics
	Annotation Storage

	data collection and annotation tools
	evaluation OF Screen EQUIVALENCE HEURISTICS
	Case StudIES of runtime accessibility repair
	Missing or Misleading Labels
	Navigation Order Issues
	Inaccessible Customized Widgets

	evaluation OF runtime repair
	Participant Feedback on Accessibility Repairs
	Repairs in Additional Mobile Apps

	CURRENT LIMITATIOnS
	conclusion
	ACKNOWLEDGEMENTs
	REFERENCES

	Final.pdf
	Robust Annotation of Mobile Application Interfaces in Methods for Accessibility Repair and Enhancement
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATed Work
	Social Annotation and Web Accessibility
	Runtime Interface Modification
	Screen and Element Identifiers

	ANDroid background
	Approach and SYSTEM OVERVIEW
	Supporting a Range of Accessibility Repair Scenarios

	implementing ROBUST ANNOTATION
	Screen Identifier
	Element Identifier
	Screen Equivalence Heuristics
	Annotation Storage

	data collection and annotation tools
	evaluation OF Screen EQUIVALENCE HEURISTICS
	Case StudIES of runtime accessibility repair
	Missing or Misleading Labels
	Navigation Order Issues
	Inaccessible Customized Widgets

	evaluation OF runtime repair
	Participant Feedback on Accessibility Repairs
	Repairs in Additional Mobile Apps

	CURRENT LIMITATIOnS
	conclusion
	ACKNOWLEDGEMENTs
	REFERENCES

