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ABSTRACT 

Accessibility issues in mobile apps make those apps difficult 

or impossible to access for many people. Examples include 

elements that fail to provide alternative text for a screen reader, 

navigation orders that are difficult, or custom widgets that 

leave key functionality inaccessible. Social annotation 

techniques have demonstrated compelling approaches to such 

accessibility concerns in the web, but have been difficult to 

apply in mobile apps because of the challenges of robustly 

annotating interfaces. This research develops methods for 

robust annotation of mobile app interface elements. Designed 

for use in runtime interface modification, our methods are 

based in screen identifiers, element identifiers, and screen 

equivalence heuristics. We implement initial developer tools 

for annotating mobile app accessibility metadata, evaluate 

our current screen equivalence heuristics in a dataset of 2038 

screens collected from 50 mobile apps, present three case 

studies implementing runtime repair of common accessibility 

issues, and examine repair of real-world accessibility issues 

in 26 apps. These contributions overall demonstrate strong 

opportunities for social annotation in mobile accessibility. 
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INTRODUCTION 
Mobile apps have become ubiquitous, used in accessing a 

wide variety of services online and in the physical world 

(e.g., financial services, transit information). However, many 

apps remain difficult or impossible to access for people with 

disabilities, an estimated 15% of the world population [30]. 

For example, recent research examined the prevalence of 

accessibility issues in a sample of 100 Android apps, finding 

that every app included at least one accessibility issue [33]. 

95% of the examined apps included touchable elements that 

were smaller than recommended by Android’s accessibility 

guidelines [17], making them difficult to access for many 

people (e.g., people with motor impairments). 94% included 

elements that lacked alternative text, making them difficult 

to access using a screen reader (e.g., for people with visual 

impairments). 85% included elements with low text contrast, 

another barrier for people with vision impairments. 

In addition to accessibility issues that can be objectively 

defined and detected by tools like Google Accessibility 

Scanner [14], considering the context of an interaction often 

reveals additional barriers. For example, a person using a 

screen reader may need to swipe 10 to 20 times before the 

focus moves to elements that should be readily available 

(e.g., the “Menu” button in the Dropbox app). As another 

example, a single inaccessible element can often undermine 

the overall functionality of an app (e.g., the 5-star rating 

element of the Yelp app lacks accessibility support, leaving 

this core functionality inaccessible to many people). 

Mobile platforms have begun to support interactive correction 
of accessibility failures. For example, Android’s TalkBack 

screen reader allows end-users to add custom labels to 

elements where an app developer has failed to provide a 

label. However, this functionality is limited to ImageButton 

or ImageView elements and requires an app developer has 

provided a ViewIDResourceName, an optional property that 

is often not specified. In an evaluation reported later in this 

paper, we examined 50 apps and found that TalkBack can 

apply custom labels to less than 13.6% of elements that it 

visits. TalkBack also does not support correcting an element 

that does have a label, even if that label is misleading. 

Prior research in the runtime repair of accessibility failures 

has often focused on the web, in part because a webpage’s 

underlying representation is available and can be modified 

prior to rendering by the browser.  Social annotation is one 

powerful approach to accessibility repair [24,40], in which 

people annotate interface elements with metadata that is then 

used to repair accessibility failures in future interactions 

(e.g., annotating images that lack alternative text with text 

that can then be presented to future people who encounter 

that image using a screen reader). Such approaches require 

a robust method for determining when an annotation is 

applied, typically addressed via the combination of a URL 

(i.e., indicating the context in which an annotation is applied) 
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and an XPath (i.e., within the context of the URL, indicating 

which element is annotated). Despite advances in runtime 

enhancement of mobile apps [31,48], social annotation 

remains difficult to apply in mobile apps because of a lack of 

methods for specifying an annotation context (i.e., the lack of 

a robust notion of a screen identifier, analogous to a URL). 

This paper addresses this underlying requirement for robust 

annotation of mobile app interface elements. We develop a 

template-based approach to a screen identifier, implemented 

for the Android platform. We then use this in demonstrating 

several types of runtime accessibility repair: 1) applying 

custom labels to interface elements, 2) correcting navigation 

order, and 3) authoring accessibility context for inaccessible 

customized elements (e.g., a 5-star rating element). 

The specific contributions of our work therefore include:  

• Development of methods for robust annotation of mobile 

app interface elements. Designed for use in runtime interface 

modification, our methods combine a novel approach to 

screen identifiers and screen equivalence heuristics with 

familiar techniques for Android element identification. 

• Implementation of initial developer tools for annotating 

mobile app accessibility metadata, including tools for 

authoring annotations and applying annotations at runtime. 

• Evaluation of our current screen equivalence heuristics in 

a dataset of 2038 screens collected from 50 mobile apps. 

• Three case studies demonstrating the implementation of 

runtime repair of common accessibility issues, each using 

the robust annotation methods developed in this research. 

• An examination of repairing real-world accessibility issues 

in 26 apps, including popular Android apps, apps with 

accessibility issues reported in online forums, and apps 

identified through an in-person interview with a person 

who regularly uses the Android TalkBack screen reader. 

RELATED WORK 

Our current research is informed by prior research in social 

annotation and web accessibility, in runtime interface 

modification, and in screen and element identifiers. 

Social Annotation and Web Accessibility 

The web’s representation has long encouraged enhancement 

of content through annotation, from annotation capabilities in 

Mosaic [43] to W3C efforts in interoperable annotations [44]. 

Prior research has developed robust web annotation to enable 

content customization and adaptation for end-users [4,5,28]. 

Extensive research in social accessibility has applied social 

annotation to web accessibility (e.g., [3,22,34,35,40,41]). 

Systems have explored various techniques, with a core that: 

1) a person observes an accessibility failure, 2) that person or 

another person annotates the interface with metadata used by 

a tool that can repair the failure, and 3) annotation data is 

shared so that future users of the interface benefit from the 

repair. Examples of research in social annotation for web 

accessibility include providing image alternative text and 

other metadata [35,40,41], repairing navigation order [34], 

sharing scripts for site-specific repairs [3], and designing 

infrastructure for crowdsourcing contributions [22]. 

Runtime Interface Modification 

Techniques for modifying the web benefit from the ability 

to directly modify a page prior to its rendering by a browser 

(e.g., modifying the HTML, CSS, or DOM). In contrast, 

non-web architectures generally lack an ability to access or 

modify internal representation, requiring different approaches 

to runtime modification. Prior research in desktop interfaces 

has replaced of an application’s toolkit [12,13,29] or used 

window manager redirection of input and output [8,39,42]. 

A meaningful modification requires understanding the 

content and state of that interface, generally obtained through 

a combination of accessibility API data (e.g., [6,39]) and 

pixel-based analysis of interface content (e.g., [8,9,10,20,46]). 

Less research has explored runtime interface modification 

in mobile platforms, in part due to their security architectures 

and greater concern for performance (e.g., a challenge for 

pixel-based techniques developed in the desktop context). 

Notable examples of runtime accessibility enhancements have 

included macro support [31] and pointing enhancement [48].  

The SWAT framework requires rooting a device for an 

accessibility service to obtain system-level instrumentation 

of content and events [32], but rooting is a significant 

security risk and also presents a technical expertise barrier. 

Recent research in interaction proxies demonstrates a strategy 

for runtime accessibility repair and enhancement without 

rooting a phone, without requiring an app’s source code, 

preserving all capabilities of a phone’s built-in accessibility 

infrastructure [47]. These techniques modify interaction 

using floating windows inserted between an app’s original 

interface and the manifest interface a person perceives and 

manipulates, deciding how to coordinate and modify 

interaction with the added floating windows according to 

information available via standard platform accessibility 

APIs. The robust annotation techniques we develop in this 

paper are also based entirely on information available via 

standard platform accessibility APIs, offering the potential 
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This interface includes 6 elements with missing 

or misleading labels for use by a screen reader. 

 
 

TalkBack allows end-users to add custom labels 

to only 2 of the elements (shown in green). 

 
 

We develop new annotation methods that allow 

developers to repair all 6 elements. 

Figure 1: Missing and misleading labels are a common and 

important accessibility issue that can be addressed by new 

approaches to robust annotation for accessibility repair. 



for broad deployment. Later sections demonstrate several 

case studies of runtime accessibility repairs implemented 

using a combination of annotations and interaction proxies. 

Screen and Element Identifiers 

As noted in the introduction, social annotation on the web has 

generally been implemented via the combination of a URL 

(i.e., indicating the context in which an annotation is applied) 

and an XPath (i.e., within the context of the URL, indicating 

which element is annotated). This strategy cannot be directly 

applied in mobile apps because the various screens of an 

app lack robust identifiers (i.e., the equivalent of a URL). 

Robust annotation of mobile apps therefore requires both: 

1) methods for identifying a screen within an app, and 

2) methods for identifying specific elements within that screen. 

Prior research exploring screen identifiers has not been 

motivated by runtime interface modification and is 

generally inappropriate for that purpose. For example, Flow 

is an Android developer toolkit that allows naming interface 

states, navigating between them by name, and remembering 

the history of states [37]. However, such a toolkit must be 

integrated by an app’s developer and cannot be used to 

reason about screens as part of an external repair. 

The Rico project developed a large dataset of mobile app 

designs, gathered by capturing data during crawls of mobile 

apps [7]. Rico encounters a screen identification problem in 

determining whether an interaction during a crawl results in 

an app entering a new interface state or a state that has 

previously been captured. They define a context-agnostic 

similarity heuristic that compares two screens based on: 1) the 

number of pixels that differ in the two screen images, and 

2) the number of differences when comparing the values of 

ViewIDResourceName for elements of the two screens. Two 

screens were considered the same if both were below 

manually-tuned thresholds, requiring the same value for 

99.8% of pixels and all but 1 ViewIDResourceName value. 

These thresholds resulted in an estimated 9% error rate 

(6% error incorrectly determining two screens were the same, 

3% error incorrectly determining two screens were different). 

Rico’s use of pixel comparison is appropriate for crawling, 

but problematic for runtime modification (e.g., it requires 

additional permissions, can present performance challenges).  

Other mobile app crawls similarly attempt to minimize 

revisitation of known screens by testing for similarity. For 

example, DECAF and PUMA define a generic feature vector 

encoding the structure of a screen’s interface hierarchy, 

then use a cosine-similarity metric to determine screen 

equivalence according to a threshold [21,26]. An evaluation 

in DECAF with a .92 threshold estimated a 20% error rate 

(including 8% error incorrectly determining two screens were 

the same and 12% error incorrectly determining two screens 

were different). The threshold can be varied to obtain different 

tradeoffs between thoroughness and speed of a crawl, but a 

developer cannot otherwise correct either class of error.  

In contrast to both of the above, the screen identification 

methods we develop in this paper: 1) use more information 

in the structure of the interface hierarchy to reduce overall 

error, and 2) allow the developer of an accessibility repair 

to explicitly correct any errors in screen identification to 

ensure robust annotation for runtime interface modification. 

Automated testing tools address a need to be in a known state 

by executing pre-defined interaction sequences that bring an 

app to known screens (e.g., [1,18,36]). Because the developer 

of a test knows what screen will be active in each step of that 

test, they can reference elements of that screen. For example, 

UiSelector is an element identifier used in Android tools [19], 

specifying elements by properties such as ContentDescription, 

ClassName, State information, Text value, and location in an 

interface hierarchy. Within the context defined by a screen 

identifier, we use a similar approach to element identifiers so 

that we leverage developer familiarity with this approach. 

ANDROID BACKGROUND 

This section reviews several Android capabilities. We first 

discuss why existing capabilities are inappropriate for robust 

annotation, then provide background on accessibility 

services and Android’s existing limited repair capabilities. 

Android’s accessibility services expose a WindowId for each 

View. Intended to support input interactions across multiple 

processes, WindowId is not stable (i.e., it will change each 

time an app is launched). It is therefore inappropriate as an 

identifier for storing annotations for use in future sessions. 

When available, Android’s accessibility services also expose 

a ViewIdResourceName for each View. ViewIdResourceName 

is Android’s primary approach to a robust identifier (e.g., to 

be used in automated testing). Unfortunately, it is optional 

and often not specified by an app developer. When 

specifying an app’s layout in an XML layout file, including a 

ViewIdResourceName allows a developer to obtain a reference 

to that element at runtime (i.e., similar to web programming 

practices of accessing an element according to an id attribute). 

However, app developers commonly create interface elements 

directly in code, obtain direct references to those elements, and 

therefore see no reason to specify a ViewIDResourceName. 

ViewIDResourceName is also not required to be unique, and 

the same value may be used by multiple elements in different 

contexts (e.g., elements in different screens of an app). 

ViewIDResourceName is therefore also not an adequately 

available and robust identifier for annotating Android elements. 

Android allows an accessibility service to capture an image 

of the screen if a person grants screenshot permission to the 

service. A person may refuse this permission. Apps can also 

specify a FLAG_SECURE to disable screen capture, a 

common practice in apps that contain sensitive information 

(e.g., in banking apps). Prior research has examined 

pixel-based analysis and annotation (e.g., [8,9,10,20,46]), but 

the application of those techniques in mobile apps is limited 

by potential lack of access to screenshots and concerns for 

mobile performance challenges in pixel-based analysis. 

Our approach focuses on using information available via the 

standard Android accessibility APIs. Each interface element 



is represented as an AccessibilityNode that exposes 

properties of that element (e.g., ClassName, AvailableActions, 

Text, ContentDescription). Each AccessibilityNode can also 

access its parent and any children, allowing us to obtain and 

consider the tree of all interface elements in a screen. 

As noted in our introduction, Android’s TalkBack screen 

reader allows adding custom labels to elements. When a 

person navigates to an element without alternative text, they 

may perform a gesture to open the “local context menu”, 

find the “add label” option, and enter a label for that element.  

Current support for interactive correction has several 

limitations: 1) It is often difficult for a person with a visual 

impairment to know the correct label for an unlabeled element, 

which can require trial and error or seeking assistance from 

another person. 2) TalkBack support for correction applies 

only to ImageButton or ImageView elements, which must 

have a ViewIDResourceName assigned by the app developer. 

3) TalkBack does not allow replacing an existing label, 

even if it is incorrect or misleading. Improved support could 

enable significant advances relative to such limitations 

(e.g., greater ability to annotate elements, new ability to share 

robust annotations among the many people using an app). 

APPROACH AND SYSTEM OVERVIEW 

Our focus is on developing an approach to robust annotation 

of mobile app interface elements. Figure 2 overviews our 

approach, currently implemented in a set of related tools. 

Later sections discuss details of our approach and our current 

tools in more detail, while also emphasizing that different 

tools can be composed to implement the overall approach. 

Beginning from the left of Figure 2, a developer implementing 

an accessibility repair first captures screens they would like 

to annotate within an app. We have developed a capture 

tool that can be used for this, implemented as an Android 

accessibility service. With the tool running in the 

background, the developer visits each screen that will be 

annotated. A software button added by the tool then allows 

capturing a current screen (i.e., a screen image and a 

snapshot of the current AccessibilityNode hierarchy). 

Collection will often include multiple captures of the same 

screen, as illustrated by color and shape in Figure 2. This can 

occur when a screen is visited multiple times during collection, 

or when a screen is captured with different content (e.g., the 

same Yelp rating screen captured for different restaurants). 

The developer of a repair identifies template screens that 

correspond to unique screens in the app. A template tool 

displays unique template screens in a row, with captured 

variations displayed in the column underneath each template. 

The tool applies our current screen equivalence heuristics, as 

discussed and evaluated in later sections, so that templates 

are automatically identified. A developer therefore only 

needs to inspect and potentially correct identified templates. 

A developer then authors annotations using a combination 

of a screen identifier for the template screen in which an 

annotation applies, an element identifier for the annotated 

element within that screen, and the metadata to be associated 

with that element. We have developed an annotation tool to 

support authoring annotations. It displays the screen image, 

uses AccessibilityNode data to generate an element identifier 

when a developer selects an element in the image, provides 

highlighted feedback on elements that will be selected as a 

developer edits an element identifier, and allows inputting 

JSON-formatted metadata to be included in an annotation. 

A developer can then create an accessibility service that uses 

annotations for the runtime repair of accessibility issues on 

end-user devices. We have developed a runtime library that 

supports comparing the current screen of an app against 

template screens for that app. If the current screen matches a 

template, the library further supports testing element identifiers 

of annotations against the current screen. The accessibility 

service can then use matching annotations in applying its 

runtime repairs. Later sections discuss three example 

services we have implemented using this approach. 

Supporting a Range of Accessibility Repair Scenarios 

Our approach and tools can support a variety of scenarios 

for a developer implementing annotation-based accessibility 

repair. Two example scenarios can include: 1) targeted repair 

in one or two screens of an app, or 2) more general-purpose 

repair of a class of errors across many different apps. 

In the first scenario, a developer might decide to modify the 

navigation order within a specific screen of a specific app 

(e.g., in the “file explorer” screen of the Dropbox app). The 

developer can open the app, visit the screen to be repaired, 

and capture its data. The developer can then inspect that 

data in our annotation tool, obtain a screen identifier for the 

“file explorer” screen, and obtain element identifiers for 

elements to be modified. The developer could then implement 

 
Figure 2: We develop and evaluate new methods for robust annotation of mobile app interface elements appropriate for 

runtime accessibility repair, together with end-to-end tool support for developers implementing accessibility repairs. 



a custom accessibility service that: 1) uses our runtime 

library to detect when the app’s context matches the “file 

explorer” screen identifier, 2) obtains references to interface 

elements in the screen using their element identifiers, and 

3) uses the references to re-order navigation in that screen. 

In the second scenario, the developer may find they want to 

extend their repair to other apps in which people report the 

same type of accessibility issue. Instead of developing many 

such specialized repair services, the developer can generalize 

their repair service. They can remove the use of specific 

screen identifiers and element identifiers, instead defining an 

annotation type and modifying their code to repair navigation 

according to any annotations available for the current screen. 

This might be sufficient for their needs, they might extend our 

annotation tool to make it easier to author such annotations, 

or they might examine new approaches to supporting a 

community of interested people in annotating many apps. 

IMPLEMENTING ROBUST ANNOTATION 

Annotation is implemented using a combination of a screen 

identifier and an element identifier. A screen identifier 

corresponds to a template screen, and a set of screen 

equivalence heuristics are used in both: 1) defining template 

screens (i.e., determining whether a screen is a variation of an 

existing template screen or distinct from existing templates), 

and 2) runtime identification of screens (i.e., determining 

whether the current screen matches a screen identifier). 

This section discusses each of these key components. 

Screen Identifier 

A screen identifier corresponds to a template screen and any 

variations of that screen, where a variation informally has 

the same screen structure with minor differences in content 

(e.g., images, text, number of items in a list). Annotations 

applied to a template will also apply to any variations, 

which both: 1) minimizes effort that might otherwise be 

spent annotating many different versions of a screen, and 

2) allows our approach in screens containing dynamic 

content that could not otherwise be feasibly annotated. 

A set of template screens is initialized with the first captured 

screen (i.e., a single template with no variations). Each 

screen is then compared against the set of current templates 

using screen equivalence heuristics. If a screen is equivalent 

to an existing template, it is added as a variation. Otherwise, 

the screen is used as a new template. Although a capture 

includes both a screen image and accessibility data, the image 

is used only for developer inspection and annotation. Screen 

equivalence heuristics must be based in the accessibility 

data, because the image will not be available at runtime. 

A developer may also use any variation as the representative 

screen for a template, as all of the variations are equivalent. 

At runtime, an accessibility service can capture accessibility 

data for a screen and use our runtime library to compare 

that screen against the set of template screens for that app. 

This uses the same screen equivalence heuristics. If a match 

is found, annotations associated with that template screen 

are considered relevant to the current screen of the app. 

Our template tool generates a unique and random screen 

identifier for each template screen (e.g., “screen_1520907”). 

A developer may also associate a human readable identifier 

with the screen identifier (e.g., “file explorer”), while 

ensuring human readable names are unique within an app. 

Identifiers can then be used with our runtime library to detect 

a screen (e.g., for a repair to the “file explorer” screen). 

Element Identifier 

A developer can then reference elements in a template screen 

using techniques familiar in Android testing frameworks 

(i.e., UiSelector and XPath selectors). Our implementation 

of these selectors also differentiates between stable and 

dynamic properties. Stable properties are unlikely to change 

between screen content updates (i.e., between variations), 

including ClassName, Depth, IsLeaf, and ViewIdResourceName. 

Dynamic properties are more likely to change, including 

ContentDescription, Location, NumberOfChildren, Size, and 

Text. The current set of properties could be extended if 

necessary or if future versions of the Android Accessibility 

APIs expose additional properties of interface elements. 

Our annotation tool also automatically generates a unique 

and random element identifier for each element in a template 

screen (e.g., “element_59401”). Each default element identifier 

corresponds to a selector including the element’s path in the 

hierarchy and its stable properties. A developer can verify 

the default selector by using the annotation tool to inspect 

how it applies in each variation. If necessary, a developer 

can edit the default selector, again inspecting how it applies 

in each variation. They may also associate a human readable 

name with an element identifier (e.g., “menu button”). 

At runtime, an accessibility service can use our runtime 

library to obtain a reference to an interface element using 

either an element identifier or a supported selector. 

Screen Equivalence Heuristics 

Annotation requires screen equivalence heuristics for 

determining a set of template screens for annotation and 

determining whether the active screen of an app matches 

one of those templates. As previously noted, we rely only 

on information available via standard Android accessibility 

APIs, so that: 1) our runtime library does not require rooting 

end-user devices, and 2) our runtime library does not require 

pixel-based analysis of screen images, which may be 

unavailable and may present performance challenges in a 

mobile app. Our heuristics are instead based in two key 

insights regarding identification of template screens. 

First, contexts where Android identifiers fail to correspond to 

a meaningful notion of a screen are not random (i.e., are not 

well described by ignoring any one ViewIdResourceName 

nor by treating them as noise in a similarity metric). Instead, 

they are often systematic, resulting from developer behaviors 

(e.g., failing to provide an identifier, copy-pasting code 

resulting in non-unique identifiers) or standard toolkit 

behaviors (e.g., widgets that dramatically change what is 

presented in a screen with only subtle indications of that 

change in the accessibility API information for the screen). 

We develop a set of heuristics based in such systematic 



behaviors, and we evaluate our heuristics in a later section. 

We note these heuristics can also be updated and extended 

as we gather additional data or as toolkit behaviors evolve 

(e.g., introducing new widgets that require adjustments).  

Second, the two types of error in screen equivalence have 

different implications. We define a FalseSame error as 

incorrectly determining two screens are the same. This can 

result in what should be a distinct template screen instead 

being considered a variation of an existing template 

(i.e., requiring developer correction), or it can also result in a 

runtime screen matching an incorrect template and retrieving 

incorrect annotations. We define a FalseDifferent error as 

incorrectly determining two screens are different. This can 

result in additional annotation overhead through the creation 

of spurious templates that could be combined, or it can result 

in a screen not being annotated at runtime. Our techniques 

allow the developer of an accessibility repair to correct either 

form of error, but we design our default screen equivalence 

heuristics to minimize FalseSame errors. This corresponds to 

preferring a need for greater annotation effort over the 

possibility of annotations being incorrectly applied at runtime. 

Our current screen equivalence is implemented using eight 

heuristics, each based on a specific app developer practice 

or toolkit behavior. Heuristic 1 makes an early determination 

based on explicit app developer indication that screens differ. 

Heuristics 2 to 5 account for common interface structures that 

require special consideration, transforming the accessibility 

API representation to better support comparison. Heuristic 6 

then filters items that should not be considered in comparison. 

Given these special case checks and adjustments, Heuristic 7 

then makes the primary comparison based on values of 

ViewIdResourceName in the two screens. Heuristic 8 then 

further reduces FalseSame errors by comparing values of 

ClassName in the two screens. After discussing each heuristic, 

we discuss how a repair developer can correct any errors. 

1. Compare ActivityName: If two screens both have an 

ActivityName value that was specified by the developer, 

but not the same value, the screens are considered different. 

This heuristic is intended to reduce FalseSame errors. 

2. Check for Navigation Drawer: This common Android 

element presents a menu above an interface by dimming 

and preventing interaction with elements under the 

menu. When this heuristic detects an open navigation 

drawer, it transforms the representation of the interface 

so remaining heuristics apply only to contents of the 

menu (i.e., ignoring the occluded background elements). 

If one screen contains an open navigation drawer, but 

the other does not, the screens are considered different. 

This heuristic is intended to reduce FalseDifferent errors. 

3. Check for a Floating Dialog: This common Android 

element also occludes elements underneath it. This 

heuristic similarly detects a floating dialog, transforms 

the representation so remaining heuristics apply only to 

contents of the floating dialog, and considers two 

screens different if only one contains a floating dialog. 

This heuristic is intended to reduce FalseDifferent errors. 

 

4. Check for Tab Layout: Android’s tab layout preloads the 

content of each tab, presenting the same tree to the 

Android accessibility APIs regardless of which tab is 

selected. When this heuristic detects a tab layout, it uses a 

binary Selected property of the active tab to transform the 

representation so remaining heuristics apply according to 

the content of that active tab. It also considers two 

screens different if only one contains a tab layout. This 

heuristic is intended to reduce FalseSame errors. 

5. Check for Radio Button Group with a Multi-Page View: 

This alternative approach to tab-like functionality similarly 

results in an Android accessibility API tree structure that 

does not adequately correspond to the selected radio button. 

This heuristic uses a binary Checked property of the active 

radio button to transform the representation so remaining 

heuristics apply according to content of the active view. 

This heuristic is intended to reduce FalseSame errors. 

6. Visibility Filter: Common Android container elements 

expose elements in their accessibility API structure that 

are outside the bounds of the screen (e.g., WebView), so 

we transform the representation by filtering to include 

only visible elements (i.e., elements with boundsInScreen 

values that correspond to non-zero area within the screen). 

This heuristic is intended to reduce FalseSame errors. 

7. Compare ViewIdResourceName: This stable property of 

each element will not change when an element’s content 

is modified. If the set of ViewIdResourceName values 

are not the same, the screens are considered different. 

This heuristic is the primary comparison based on any 

transformations applied in the previous heuristics. 

8. Compare ClassName: As with ViewIdResourceName, this 

stable property will not change when an element’s content 

is modified. We consider this additional stable property 

to helps address situations where ViewIdResourceName 

is not informative. If the set of ClassName values are 

not the same, the screens are considered different. 

This heuristic is intended to reduce FalseSame errors. 

Our evaluation shows these heuristics are highly effective, 

and they can be extended as additional data suggests new 

heuristics. However, any approach will sometimes require 

correction by the developer of a repair. For a FalseSame error, 

a developer can write an element selector that differentiates 

the two screens. Any future screens that match the original 

template will then be separated into two templates based on 

whether they match the selector. For a FalseDifferent error, a 

developer combines the two template screens and their 

variations. Any future screens will be considered equivalent 

if they match either of the original templates. Although we 

have not found it necessary, we note that multiple such 

corrections could be composed as needed. 

Annotation Storage 

The tasks of inspecting, editing, and using annotations  

require: 1) collections of template screens, each including a 

screen image, associated accessibility data, and a screen 

identifier used for referencing that template screen, 

2) variations associated with each template screen, 3) element 



identifiers for each element in each template screen, and 

4) annotations defined as a combination of a screen identifier, 

an element identifier, and the annotation metadata to be 

associated with that element of that screen. Our current 

implementation stores this data in Google’s Firebase. 

DATA COLLECTION AND ANNOTATION TOOLS 

Our core methods for screen identifiers, element identifiers, 

and screen equivalence can be applied in a variety of tools. 

We have created an initial set of tools to support development 

of repairs based on these methods. This section introduces 

our current tools and briefly discusses potential alternatives. 

Capture Tool 

Implemented as an Android accessibility service, this tool 

runs in the background to allow a developer to capture screens. 

A developer browses to a screen they want to capture, then 

presses a software button on the navigation bar. The tool 

plays a confirmation sound, captures a screen image with 

associated accessibility data, and uploads them to the 

database. The capture tool therefore requires screenshot 

permission, but our runtime tools do not (i.e., captured images 

are used only used to support annotation and our runtime 

tools do not use pixel-level data). If a developer wants to 

capture an app that has disabled screenshot permission, they 

can use a rooted device or emulator [45]. Although a 

requirement to root a device is inappropriate for end-user 

accessibility tools, it is more appropriate for a developer 

and is the only method to circumvent FLAG_SECURE. 

Typical capture will include a developer navigating through 

an app, using the tool to capture different screens, 

interacting with the app, and capturing variations of screens. 

Template Screen Tool 

This web application supports a developer inspecting and 

potentially correcting identified template screens in each app.  

Images of template screens are shown in the top row, with 

any variations shown in a column underneath each template. 

Template screens and their variations are automatically and 

reliably identified using screen equivalence heuristics, so the 

tool is primarily used to inspect the results, obtain screen 

identifiers, make occasional corrections, and access the 

annotation tool by clicking into a screen. If a correction is 

needed, the tool supports authoring a selector or combining 

templates (i.e., as discussed in Screen Equivalence Heuristics). 

Annotation Tool 

This web application supports a developer in authoring 

annotations on a template screen. It is currently accessed by 

clicking a screen image in the template screen tool. The tool 

shows the screen image with its screen identifier and uses 

captured accessibility API data to highlight elements when 

a developer clicks on them. Developers can also author a 

custom selector and receive feedback through highlighting 

one or more elements. For each highlighted element, its 

identifier and properties are shown in a list. An annotation 

can be authored as JSON-formatted metadata, or a developer 

can extend the annotation tool with custom functionality for 

a particular class of annotation (e.g., as with customized 

annotation interfaces developed in our later case studies). 

Runtime Library 

Our runtime library supports annotation-based accessibility 

services by providing key functions for obtaining accessibility 

data, identifying a screen by comparing it to a library of 

templates, identifying elements in a screen, and retrieving 

annotations. The library also supports listening for ViewClicked 

and WindowStateChanged events, which can lead to a change 

of screen structure requiring identification of the new screen. 

Our library therefore supports overall management of relevant 

annotations, allowing a developer to focus on the functionality 

of their accessibility repair service. 

Alternative Collection and Annotation Tools 

Our current tools support an end-to-end annotation process 

for developers, chosen as a first primary audience as we 

develop tools based on this approach to annotation. We 

envision future research exploring complementary approaches. 

For example, an extension of our tools might support end-user 

capture and annotation directly on their phone (e.g., requiring 

screenshot permission during capture, but allowing end-users 

to directly collect and annotate data for a repair). Future 

research might also examine how to scale annotation, perhaps 

drawing upon crowdsourcing and friendsourcing techniques 

developed in other contexts (e.g., [35,40,41]). Our approach 

to screen equivalence could be included in tools for automated 

exploration of mobile apps (e.g., [2,21,27]), and such tools 

could benefit the capture of data for accessibility repair. 

EVALUATION OF SCREEN EQUIVALENCE HEURISTICS  

To evaluate the effectiveness of our current screen equivalence 

heuristics, we recruited 5 developer participants to capture 

screens and identify templates in a dataset of real-world 

mobile apps. Our sample of mobile apps was 5 top free 

apps in each of 10 categories. 5 participants were recruited 

from our department, as our primary criterion was to recruit 

experienced developers familiar with mobile apps. 

Each session began with simple training, showing participants 

how to capture a screen and how to use the template screen 

tool to examine identification of template screens in an app. 

We then asked each participant to capture screens for all of 

the major features in 10 apps, and if possible to capture one 

or more variations for each screen. After completing capture 

for each app, the participant was asked to use the template 

screen tool to examine the identification of template screens 

in their capture of that app and to correct any errors. 

Because our focus was on data collection, participants used 

a simplified version of the tool that allowed dragging screens 

to re-arrange them, without a need to identify a selector that 

could allow the templates to be used with our runtime tools. 

When a participant completed capture and identification of 

template screens for the 10 assigned apps, we asked them to 

examine template screens in another 10 apps captured by other 

participants. We therefore obtained 2 developer judgments 

regarding the template screens and variations within each 

app, and the lead researcher resolved the limited number of 

disagreements (a total of 12 disagreements in 9 apps). 

Participants were compensated with a $20 gift card. Data 

collection took about 5 to 10 minutes for each app.  



Participants collected a total of 2,038 screens from 50 apps. 

Following the same procedure used in [7], we examine 

equivalence in the 42,504 pairs of screens that result from 

considering all pairs within each app. Table 1 summarizes 

the improvement associated with each heuristic. Because our 

primary heuristic compares values of ViewIdResourceName, 

we report the effectiveness of other heuristics in terms of 

improvement relative to this. Considering only 

ViewIdResourceName in our dataset results in a FalseSame 

error rate of 3.10% and a FalseDifferent error rate of 2.28%. 

Adding each heuristic reduces these, and the comparison of 

ViewIdResourceName following all previous heuristics 

results in a FalseSame error rate of 0.44% and a 

FalseDifferent error rate of 0.83%. Comparison of ClassName 

then further reduces the FalseSame error rate to 0.09% while 

slightly increasing the FalseDifferent error rate to 0.92%. 

Overall this is a 97% reduction in FalseSame error with a 

60% reduction in FalseDifferent error, consistent with our 

goal of prioritizing the minimization of FalseSame errors 

(i.e., as discussed when introducing our screen equivalence 

heuristics). Remaining errors can also generally be addressed 

by the developer of a repair (i.e., specifying a selector or 

merging templates), a capability lacking from prior 

approaches to screen equivalence (e.g., [7,21,26]). Error 

rates are well below the 6% FalseSame and 3% 

FalseDifferent error rates in [7], though care must be taken 

in comparing these rates because those numbers are based 

on a different and much smaller dataset (i.e., 1044 pairs of 

screens from 12 apps used to tune the equivalence 

thresholds used in that work). Robust screen identifiers 

should also allow a developer to author an element 

identifier for any element in a screen. In contrast, we find 

the TalkBack screen reader’s reliance on 

ViewIdResourceName will allow it to apply a custom label 

to only 13.6% of TalkBack-visited elements in this data. 

Examining this data, we observe a practice of obfuscating 

ViewIdResourceName. For example, the Facebook Messenger   

app sets ViewIdResourceName to “name_removed” for all of 

its elements. Considering only ViewIdResourceName results 

in 84 FalseSame errors in this app, while our heuristics use 

ActivityName, interface structure, and ClassName to reduce 

this to only 2 FalseSame errors (which could then be corrected 

by developer specification of an appropriate selector). We 

also note approaches based entirely on ViewIdResourceName, 

including the TalkBack screen reader’s support for adding 

custom labels, will be completely ineffective in such an app 

(i.e., because all elements have the same ViewIdResourceName). 

Heuristic 8 reduces FalseSame error by checking ClassName, 

but slightly increases FalseDifferent error. Examining this, 

we find that advertising banners are a common cause of 

increased FalseDifferent error. For example, the Abs Workout 

app includes advertising elements that have different 

ClassNames before and after an advertisement is loaded. 

This suggests a future heuristic might filter advertising 

elements, perhaps by blacklisting their ClassNames. 

We also observe a small number of cases that likely cannot 

be resolved using our current techniques due to an app’s 

complete failure to implement a meaningful representation 

via the accessibility APIs. For example, the TopBuzz app 

includes a custom-implemented tab layout that does not 

expose any indication of what tab is active (e.g., nothing like 

the Selected or Checked properties in our current heuristics). 

It also does not properly expose elements of all tabs to the 

accessibility APIs, but instead exposes contents of the first 

tab regardless of which tab is currently active. Resolving 

such a complete failure may require pixel-based techniques 

(e.g., as in [8,9,10,11]). Although this will require 

screenshot permission at runtime, performance implications 

might be addressed by limiting pixel-based analysis to only 

such special-case scenarios where accessibility data fails. 

CASE STUDIES OF RUNTIME ACCESSIBILITY REPAIR 

This section demonstrates repair of three common types of 

accessibility issues, all implemented using our approach to 

robust annotation. These case studies are implemented 

using interaction proxy techniques, and correspond to prior 

proof-of-concept demonstrations in that research [47]. 

However, it was previously infeasible to scale demonstrations 

beyond a handful of elements in a handful of apps, due to a 

lack of methods for determining where and how to apply a 

runtime repair. Integrating annotation-based techniques into 

these demonstrations is an important step toward runtime 

accessibility repair in mobile apps, which the next section 

further examines in a set of 26 real-world apps. 

Missing or Misleading Labels 

As illustrated in Figure 1, many apps contain both unlabeled 

elements (e.g., elements lacking a ContentDescription that 

will therefore be read as “unlabeled”) and elements with 

misleading labels (e.g., Figure 1’s two buttons labeled “15”).  

We implemented an accessibility service that uses annotations 

to repair elements with missing or misleading values of 

ContentDescription. A developer uses the annotation tool to 

identify an element in need of label repair (e.g., by clicking it 

in the image, by writing a custom selector), then uses a text 

field to enter an appropriate ContentDescription, which the 

tool stores as an annotation. At runtime, the accessibility 

  Error Rate (%) 

 Heuristic FalseSame FalseDiff 

- Only ViewIdResourceName 3.10 2.28 

1 ActivityName 2.51 2.28 

2 Navigation Drawer 2.51 1.06 

3 Floating Dialog 2.51 0.83 

4 Tab Layout 1.55 0.83 

5 Radio Button Group 1.48 0.83 

6 Visibility Filter 0.44 0.83 

7 ViewIdResourceName as above as above 

8 ClassName 0.09 0.92 

Table 1. Improvements in error rates resulting from the 

addition of each of our current screen equivalence heuristics. 

 



services detect whether the current screen includes any 

annotations, then uses interaction proxy techniques to repair 

how annotated elements are read by the screen reader. 

Navigation Order Issues 

The navigation order of interface elements is important to 

many people (e.g., a person using swipe gestures to navigate 

interface elements with a screen reader, a person using a 

switch interface), but many apps have navigation orders 

that can make them difficult to use. For example, the 

navigation order for the Dropbox app begins with the “add” 

button and then requires navigating through all files in the 

current folder (i.e., a list of arbitrary length) before 

accessing the “menu”, “select”, or “more” buttons. 

We implemented an accessibility service that uses annotations 

to repair navigation order within a screen. A customized 

annotation interface shows the current navigation order and 

allows developers to modify the order by moving elements in 

a list. The resulting navigation order is stored as an annotation 

associated with the screen, which our accessibility service 

detects at runtime and uses to correct the navigation order. 

Inaccessible Customized Widgets 

Whenever a developer creates a custom interface element, 

they also need to write additional code to expose appropriate 

accessibility hierarchy and context [15]. Unfortunately, many 

developers fail to do this, so these custom elements can be 

difficult or impossible to use with an accessibility service. 

For example, custom rating widgets found in Yelp and many 

other apps are often inaccessible (e.g., the Yelp rating widget 

is exposed as a TextView and does not allow a person using 

a screen reader or switch interface to enter a rating). 

We implemented an accessibility service that uses annotations 

to repair some forms of inaccessible customized widgets. 

Figure 2 illustrates our enhancement of the annotation tool 

that supports rubberband selection to define clickable areas 

within an element, storing a list of these areas with a 

ContentDescription for each as an annotation on the element. 

At runtime, the accessibility service uses these annotations 

to create the missing accessibility API representations. This 

approach can only repair relatively simple custom elements, 

but also suggests an approach to more sophisticated repairs. 

EVALUATION OF RUNTIME REPAIR  

Our case studies build upon prior demonstrations of 

accessibility repairs that have received positive feedback, 

including feedback in two rounds of studies with 14 people 

with visual impairments who use screen readers [47]. The 

end-user experience with repair is the same as in this prior 

research, but prior demonstrations were limited to a handful 

of apps chosen by the research team and custom code for 

each repair. Our current evaluation therefore focused on 

examining the application of our selected categories of 

repair to accessibility issues in real-world apps. We first 

worked with a participant who uses a screen reader, repairing 

accessibility issues they identified as problematic. We then 

collected and repaired issues in a larger set of apps.  

Participant Feedback on Accessibility Repairs 

To gather initial feedback on accessibility repairs implemented 

in our case studies, we interviewed a person who is blind and 

has used an Android screen reader for 6 years. Via email prior 

to the interview, we described the three types of accessibility 

issues addressed in our case studies and asked if he found 

these issues in apps he frequently used. He replied to report 

issues in 6 apps. We then spent an hour capturing screens 

and authoring annotations to repair the accessibility issues 

he reported, followed by an additional hour examining the 

apps to find and repair issues he had not mentioned. We 

note the runtime repair of accessibility issues in 6 different 

apps would be infeasible in prior approaches requiring 

custom code to repair to specific elements in specific apps 

(e.g., prior repair demonstration in interaction proxies [47]). 

During the interview, we first asked the participant to show 

how he normally used each app and how it was inaccessible. 

We then enabled our accessibility repair service and asked 

him to revisit the interactions he had showed us. After he 

experienced all repairs to the accessibility issues he reported, 

we disabled our repair service and guided him to screens 

with additional accessibility issues he had not mentioned. 

We then re-enabled the repair service, so he could experience 

the difference. After each app, we asked him: 1) to what 

extent the accessibility issues are a barrier; 2) if a repair 

service would change how he uses the app; 3) whether the 

repair service addressed all accessibility issues he mentioned. 

At the end of the interview, we asked for his overall opinion 

and thoughts regarding our approach and its potential. 

Overall the participant expressed frustration with accessibility 

issues: “These (accessibility) barriers make me not want to 

use them (apps). I'm a customer, just happened to be blind, 

but I’d like to use these services.” He confirmed our repairs 

addressed the issues he reported, as well as additional issues 

in the same apps. He described how repairs would change 

how he uses apps, and might help more people: “Having the 

annotation available and making the app accessible make 

me more likely to use the app. I'd like to be able to use more 

stuff and do more. Enhancing (the apps) to be more usable 

and accessible…that makes it better for everybody.” 

One app he identified was BECU (i.e., a local credit union). 

The app is implemented with cocos2dx, a game engine that 

was probably chosen for its ability provide high-quality 

animations. It unfortunately exposes very limited information 

to the Android accessibility APIs. On the login screen, 

TalkBack cannot navigate focus to the input fields for the 

account name or password. This app did include support for 

Android’s voice assistant, which speaks a list of available 

options (e.g., “enter the password”), then requires double 

tapping and speaking an option. The participant objected 

that this solution did not meet accessibility expectations: 

“that’s not what I want, and it is not the way it should be 

working…I should just be able to double tap on the 

username and type it”. He also noted that speaking 

introduces privacy concerns: “I often wear headphones and 

(keep) the screen off so that nobody could hear what's 



going on”. We repaired the inaccessible login screen by 

defining a clickable area and defining a description for each 

input field. We did not continue repair beyond the login 

screen, both because we did not have credentials to use 

during capture and because we did not want to ask the 

participant to expose his personal information in testing.  

The participant also identified the At Bat app, which features 

listening to live streams of baseball games. However, after 

paying for a subscription, the participant found he could not 

access the streams. The “play” button is unlabeled, and a 

feed source must be selected to enable the unlabeled “play” 

button. Without instruction, this interaction is extremely 

difficult for a person using a screen reader. The participant 

was frustrated by the player: “it’s a big barrier that I am 

not able to really use that app, it makes me frustrated and I 

don't understand why they are unlabeled…I don't want to 

open some random buttons”. We annotated the unlabeled 

buttons with appropriate labels, repaired the navigation order 

to more easily move to the audio player, and added an 

instruction to select a feed. The participant described how 

these repairs would make the app useful: “I would actually 

use it and I paid for it…Right now, I'm not using it at all.” 

Repairs in Additional Mobile Apps 

As a complement to our in-depth exploration with the above 

participant, we made repairs in 20 additional apps. 10 were 

identified as having accessibility issues by participants in 

accessibility-related forums [16,23,38], and 10 were selected 

from the top downloaded apps in the Google Play Store. 

Details regarding the accessibility issues we repaired in a 

total of 26 apps are available at https://github.com/appaccess. 

Across 24 apps, we found and repaired 115 labels that were 

missing and 46 labels that were misleading. Across 18 apps, 

we found and repaired 29 navigation order issues. Across 

11 apps, we found and repaired 12 inaccessible custom 

widgets. We include examples of these repairs in the 

supplementary video. 

Because runtime repair of mobile accessibility issues is a 

relatively new capability (e.g., [32,47]), and because prior 

methods have required custom code specific to each repair, 

we believe this is the largest existing set of runtime repairs 

of mobile app accessibility issues, thereby providing support 

for the potential of annotation-based accessibility repair. 

CURRENT LIMITATIONS 

Our evaluation found that a relatively small number of apps 

expose an accessibility API representation that 

fundamentally lacks vital information (e.g., screens in 

TopBuzz on page 8, the BECU app on page 9). Our current 

screen equivalence heuristics cannot be effective in such 

circumstances. Careful authoring of selectors based on the 

available information might allow a motivated developer to 

differentiate screens and author repairs, but other 

approaches may also be beneficial. For example, we have 

overall avoided pixel-based analysis, but might make 

limited use of such techniques in situations like these which 

cannot otherwise be addressed. 

Currently, we examine capture and annotation of an app 

within a single version of that app running on a single phone 

(i.e., at a single screen resolution and in portrait orientation). 

We are not aware of any prior research in screen equivalence 

that has addressed this limitation, but future research toward 

large-scale deployment of annotation-based repair will need 

to consider different versions and renderings of the same app. 

Our approaches should be promising, as they do not rely upon 

element location or size and large-scale changes can likely be 

modeled as additional template screens. Scrolling, animation, 

and dynamic introduction of new elements are also classic 

difficulties in runtime interpretation and modification. Our 

runtime tools currently address this by identifying a screen 

when it first appears, then monitoring events that might 

indicate a change in the active screen. This has been 

effective, but additional approaches may be necessary. 

Our current implementation is for Android. Although it is not 

the most popular mobile platform among people who use 

screen readers, its open platform both enables our annotation 

techniques and allows advances to be directly deployed in 

accessibility services. Our overall strategy (i.e., identifying 

components and patterns that lead to screen equivalence errors) 

is likely to generalize to additional mobile platforms. 

CONCLUSION 

This paper has introduced an approach to robust annotation 

of mobile apps, using techniques appropriate for runtime 

accessibility repair. We have presented our underlying 

methods in terms of screen identifiers, element identifiers, 

and screen equivalence heuristics. We have developed an 

initial set of tools based on these methods, focused on 

developer implementation of accessibility repair services. 

We then evaluated our screen equivalence heuristics, 

presented our case studies applying annotation in runtime 

accessibility repair, and examined these case study 

implementations in repairing real-world accessibility issues. 

Supporting materials (e.g., code and screen data) are 

available at: https://github.com/appaccess. 

We have demonstrated an initial set of annotation tools, but 

there are many more possibilities. For example, our approach 

might be integrated directly into Android’s core accessibility 

services (i.e., the TalkBack screen reader and Switch Access). 

Annotation could address limitations of these tools in relying 

upon ViewIdResourceName. Future research could also 

explore tools that do not require developer-level expertise, 

including crowdsourcing or friendsourcing approaches. 

Robust approaches to mobile app screen equivalence and 

annotation can also have applications beyond accessibility, 

including interface testing, large-scale collection and analysis 

of mobile apps [7,21,33], and task automation [25]. Overall, 

we believe many new tools can be developed using the 

underlying methods developed in this initial research. 
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