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ABSTRACT 
Current eye-tracking input systems for people with ALS or 
other motor impairments are expensive, not robust under 
sunlight, and require frequent re-calibration and substantial, 
relatively immobile setups. Eye-gaze transfer (e-tran) 
boards, a low-tech alternative, are challenging to master and 
offer slow communication rates. To mitigate the drawbacks 
of these two status quo approaches, we created GazeSpeak, 
an eye gesture communication system that runs on a 
smartphone, and is designed to be low-cost, robust, portable, 
and easy-to-learn, with a higher communication bandwidth 
than an e-tran board. GazeSpeak can interpret eye gestures 
in real time, decode these gestures into predicted utterances, 
and facilitate communication, with different user interfaces 
for speakers and interpreters. Our evaluations demonstrate 
that GazeSpeak is robust, has good user satisfaction, and 
provides a speed improvement with respect to an e-tran 
board; we also identify avenues for further improvement to 
low-cost, low-effort gaze-based communication 
technologies. 
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Eye gesture; accessibility; augmentative and alternative 
communication (AAC); Amyotrophic lateral sclerosis 
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INTRODUCTION 
Eye gaze keyboards [21,28] are a common communication 
solution for people with Amyotrophic Lateral Sclerosis 
(ALS) and other motor impairments. ALS is a 
neurodegenerative disease that leads to loss of muscle 
control, including the ability to speak or type; because eye 
muscle movement is typically retained, people with late-
stage ALS usually rely on eye tracking input for 

communication. Unfortunately, the hardware for 
commercial gaze-operated keyboards is expensive. For 
example, the poplar Tobii Dyanvox [28] eye gaze hardware 
and software package costs between $5,000 and $10,000, 
depending on the specific model and configuration. 
Additionally, eye trackers do not work in certain conditions 
that interfere with infrared light (IR) (such as outdoors), and 
require a stand to keep the apparatus relatively static with 
respect to the user, which makes it difficult to use in certain 
situations such as in a car or in bed. 

Eye-gaze transfer (e-tran) boards [3,17] are an alternative, 
low-tech communication solution, where clusters of letters 
are printed on a transparent plastic board. The 
communication partner holds the board, and observes the 
gaze pattern of the person with ALS (PALS), who selects a 
letter by making two coarse eye gestures: one to select 
which of several letter groupings contain the target letter, 
and a second to indicate the position within the group. 
Unfortunately, e-tran boards have several drawbacks:  their 
cost is relatively low compared to gaze-tracking systems, 
but is not negligible (~$100); the large plastic board (e.g., 
one popular model [17] measures 14″ x 18″) is not easily 
portable; patients need to perform two eye gestures to enter 
one letter, which may take more than 8 seconds [25] 
including correcting mistakes; our survey of PALS’ 
caregivers indicated they found e-tran to have a high 
learning curve, as they have to decode and remember 
entered characters and predict words. 

In this work, we investigate how to provide low-cost, 
portable, robust gaze-based communication for PALS that 
is easy for patients and caregivers to use. Our solution uses 

Figure 1. The communication partner of a person with motor 
disabilities can use the GazeSpeak smartphone app to translate 
eye gestures into words. (a) The interpreter interface is displayed 
on the smartphone’s screen. (b) The speaker sees a sticker 
depicting the four letter groupings affixed to the phone’s case. 
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a smartphone to capture eye gestures and interpret them 
using computer vision techniques. Our system, GazeSpeak, 
consists of computer-vision-based eye gaze recognition, a 
text prediction engine, and text entry interfaces that provide 
feedback to the speaker (PALS) and interpreter (caregiver 
or communication partner). GazeSpeak is as portable as a 
mobile phone, patients perform only one eye gesture per 
character, and the mobile phone records the entered 
characters and predicts words automatically. Further, 
GazeSpeak does not require re-calibration under similar 
lighting conditions, and it does not require a bulky stand, as 
caregivers can hold the phone. GazeSpeak has no additional 
cost other than a smartphone, which most people in the U.S. 
(68% in 2015) [2] already own. 

We evaluate the error rate of our eye gesture recognition, as 
well as satisfaction and usability for both the speaker and 
interpreter. We also compare the communication speed of 
GazeSpeak to that of an e-tran board. We find GazeSpeak is 
robust, has good user satisfaction, and provides a speed 
improvement with respect to e-tran. GazeSpeak offers a 
viable low-cost, portable, lighting-robust alternative for 
situations in which eye-tracking systems are unaffordable 
or impractical. 

The specific contributions of this work include: 

 The GazeSpeak system, including algorithms to robustly 
recognize eye gestures in real time on a hand-held 
smartphone and decode these gestures into predicted 
utterances, and user interfaces to facilitate the speaker 
and interpreter communication roles.  

 User study results demonstrating GazeSpeak’s error rate 
and communication speed, as well as feedback from 
PALS and their communication partners on usability, 
utility, and directions for further work. 

RELATED WORK 

Low-Tech Gaze Input Solutions 
As shown in Figure 2, an e-tran board [3,17] is a low-tech 
AAC (augmentative and alternative communication) solution 
that comprises a transparent board containing groups of 
symbols, such as letters. An interpreter holds the board and 
observes and decodes the eye gestures of the speaker; the 
speaker gazes in the direction of a group to select a cluster 
of symbols and then again to disambiguate the location of a 
specific symbol within the cluster. Another low-tech 
solution, EyeLink [25], is also a transparent board printed 
with letters. To use EyeLink, the speaker keeps staring at 

the desired letter, while the interpreter moves the board 
until she can “link” her own eye gaze with that of the 
speaker, and note the letter on the board where their eyes 
meet. Families and occupational/speech therapists may also 
develop myriad custom low-tech communication solutions, 
such as attaching a laser pointer to a patient’s head (if they 
have head movement control) that can be used to point at 
letters printed out on a poster or board. While relatively 
cheap (costing tens or low hundreds of dollars for 
materials), low-tech solutions provide low communication 
bandwidth (entering a letter takes 8-12 seconds [25]) and 
place a high learning/cognitive burden on the interpreter. 
Low tech solutions, while not optimal, are nonetheless 
important in offering a communication option in situations 
where other options are unavailable.  

High-Tech Gaze Recognition Solutions 
As shown in Figure 3, commercial gaze-operated keyboards 
allow PALS to type characters to complete a sentence 
[21,29], or select symbols to build sentences word by word 
[30]. Typically, systems are dwell-based [15,20] (i.e., the 
user dwells their gaze on a key for a period, typically 
several hundred milliseconds, in order to select that key), 
though dwell-free gaze systems [13,37] are an emerging 
area of research and commercial development that may 
offer further speed improvements. Other, less common, 
gaze input interfaces may include techniques like scanning 
[4] or zooming [34]. 

Specialized hardware and setups are used in eye gaze 
tracking systems. Head-mounted eye trackers [1,18] keep 
the eyes and the camera close and relatively static during 
head movement. However, such systems are expensive, and 
their bulk/weight is not typically comfortable for constant 
use as required by someone with a motor disability; head-
worn systems may also interfere with eye contact and the 
ability to observe the environment, making them even more 
impractical for constant use.  

Other eye tracker solutions mount a camera on a computer 
monitor or table, and find pupil locations based on 
reflections. Because of the longer distance between eye and 
camera, commercial systems [27,28] often emit IR to 
increase light reflection from the eyes. IR makes eye 
movement more detectable, but limits outdoor usage due to 
interference from the strong IR in sunlight. Eye trackers 
range in price from hundreds to thousands of dollars 
depending on quality; some relatively low-cost commercial 
eye trackers are available (e.g., the Tobii EyeX costs around 

Figure 2. Low-tech gaze input solutions: a) E-tran board; 
b) EyeLink; c) Laser pointer on communication board
(image courtesy of lowtechsolutions.org). 

Figure 3. High-tech gaze recognition solutions: (a) Tobii 
Dynavox eye-tracking computer [28]; (b) EyeSpeak eye-
tracking glasses [18]. 



 

 

 

$150 USD); however, people who rely on eye gaze for 
AAC must also purchase a computer to connect to the eye 
tracker and proprietary software that allows the eye gaze to 
control a keyboard and other computer programs; such 
bundles [28] typically cost between $5,000 - $10,000. In the 
United States, government health insurance (Medicare) has 
only just begun to help pay for AAC devices [32]; some 
insurers do not consider access to AAC as a medical 
necessity.  

There are also attempts at using low-cost webcams or 
phone cameras to recognize eye gaze location, and use 
direct gaze pointing as an input method. WebGazer [24] 
uses a webcam to infer the gaze locations of web visitors on 
a page in real time, and self-calibrates while visitors interact 
with content on the screen with their mouse cursor. Any 
movement of the camera or head requires additional 
interactions to re-calibrate. However, PALS or other motor 
impairments cannot move the mouse to interact, which 
would break WebGazer’s self-calibration algorithm. 
iTracker [12] uses an iPhone’s front camera to estimate 
gaze location on the screen. Calibration can increase 
accuracy, but is not required, as it is pre-trained on a large-
scale eye tracking database. However, extending this 
method to additional mobile devices may require collecting 
large eye tracking datasets for each device type. In addition, 
its prediction error on the iPhone 5 is almost 30% of the 
screen width. 

Besides gaze location, eye-switches and eye gestures can 
also be used as an input method. Eye-switches [7] use 
voluntary eye blinks as binary signals, which helps in 
scanning input methods. In a 2D letter grid, the system 
moves the focus line by line, and the first eye-switch can 
select the line that contains the desired letter; then the 
system moves the focus letter by letter on that line, and the 
second eye-switch selects the desired letter. EyeWrite [37] 
is the first letter-like gestural text entry system for the eyes, 
and uses a Tobii IR eye tracker to capture gaze input. Its 
letter-drawing interface is a square with four corners. The 
user has to move gaze to the corners to map out a letter. 
EyeWrite does not require the dwell time to select a letter, 
except needing slight dwell time to signal character 
segmentation. Testing found EyeWrite’s text entry speed 
was around 5 wpm. Vaitukaitis and Bulling [31] presented a 
prototype that could recognize different continuous eye 
gesture patterns on a laptop and mobile phone. For example, 
the user can move his gaze left, then up, then right, and 
finally down to draw a diamond pattern. However, their 
evaluation was conducted in an indoor setting with 
controlled lighting, requiring fixed device position and 
distance to participants. Even with these carefully 
controlled conditions, the performance of this prototype 
was less than 5 frames per second on the phone with only 
60% accuracy. In our work, we do not use compound eye 
gestures to draw letters or shapes; rather, we use simple, 
single-direction gestures (e.g., look left) to select among 
groups of letters.  

DESIGN GOALS 
Before we started to build GazeSpeak, we conducted an 
online survey targeted at communication partners (spouses, 
caregivers, etc.) of PALS, and advertised our survey via an 
email list about ALS in the Seattle metropolitan area. We 
received 22 responses; this low number is not surprising 
given the low incidence rate of ALS, about 1 in 50,000 
people [26]. 

All of the respondents indicated owning either an iPhone or 
Android phone. 36% of them said their companion with 
ALS did not own an eye-tracking system. For those whose 
companion did have an eye-tracker, 28% of them reported 
that the PALS was unable to use the eye-tracking system 
during more than half of the waking hours, due to issues 
such as system crashes, positioning at angles or locations 
where mounting the system is impractical (being in bed, 
inclined in a chair, or using the bathroom), being in 
situations with limited space (such as traveling in a car), or 
outdoors due to interference from sunlight. They also noted 
that when their companions with ALS only want to convey 
a quick communication, the start-up costs of such systems 
(which respondents indicated required frequent re-
calibration in practice) seemed too long in proportion to the 
length of the communication.  

64% of respondents indicated having used e-tran boards as 
an alternative when eye tracking was not available. Some 
who had not tried e-tran boards indicated they had not done 
so because their companion was in earlier stages of ALS’s 
progression and still retained some speech capabilities. The 
self-reported learning curve for e-tran was varied; 36% of 
respondents reported it took a few hours to master, 14% 
spent a day, 29% spent a week, and 21% indicated it took 
more than a month. Respondents reported challenges in 
using e-tran boards: the interpreter may misread the eye 
gesture, forget the sequence of previously specified letters, 
and finds the board heavy/uncomfortable to hold; for the 
speaker, it is difficult to correct a mistake in gesture or 
interpretation. Respondents indicated that one or two words 
is the typical length of an utterance specified via e-tran 
board. 

These survey responses added to our knowledge of the 
concerns facing end-users of gaze-based AAC; based on 
these responses and the other cost and practicality issues 
discussed in the Introduction and Related Work sections, 
we articulated several design goals for GazeSpeak: 

1) Create a low-cost/high-tech alternative in an eco-system 
that currently offers only high-cost/high-tech and low-
cost/low-tech solutions: GazeSpeak is meant to be 
affordable for people who may not be able to purchase an 
expensive, multi-thousand-dollar eye tracking solution. 
Since smartphone ownership is common in the U.S. [2] and 
was ubiquitous among our survey respondents, a 
smartphone app seems a reasonable way to reach a large 
audience at no additional cost to end-users. We do not 
expect that our smartphone app should exceed the 



 

 

 

performance (in terms of text entry rates) of expensive, 
commercial eye tracker setups; however, we do expect that 
GazeSpeak will offer performance and usability 
enhancements as compared to the current low-cost 
alternative. In addition to supporting a low-cost solution, 
the mobile phone form-factor preserves (and even exceeds 
some of) the advantages of current low-tech solutions in 
being smaller, lighter, more portable, and more robust to 
varied lighting sources than high-cost commercial eye-
tracking setups. 

2) Simplify the e-tran process through automation: While 
cheap and flexible for many scenarios, e-tran still has 
several drawbacks that we aim to mitigate with GazeSpeak, 
particularly: (1) slow speed of text entry, (2) difficulty of 
error correction, and (3) high cognitive burden for the 
interpreter. 

SYSTEM DESIGN AND IMPLEMENTATION 
GazeSpeak application currently supports iOS devices 
released after 2012. It uses the phone’s built-in camera, 
touch screen, and speaker, and does not require extra 
hardware. To improve learnability and usability, a simple 
guide representing the four keyboard groupings and 
associated gesture directions can be printed and taped to the 
back of the phone’s case (Figure 1b).  To use this system, 
the interpreter holds the phone and points the back camera 
toward the speaker (PALS) (Figure 1a and Figure 8).  

The app consists of three major components: 1) eye gesture 
recognition, 2) a predictive text engine, and 3) a text entry 
interface. 

Eye Gesture Recognition 
GazeSpeak can robustly recognize six eye gestures for both 
eyes: look up, look down, look left, look right, look center, 
and close eyes. If the speaker can wink (closing only one 
eye at a time), it also recognizes winking the left eye and 
winking the right eye. The recognition code is written in 
C++ and depends on open-source libraries: Dlib [11] and 
OpenCV [5]. To save development time, we only 
implemented eye gesture recognition on iOS; however, 
GazeSpeak could be easily extended to other platforms that 

support these dependencies, such as Android, Windows, 
Mac and Linux. 

Calibration 
GazeSpeak collects a set of eye gestures from the speaker 
as calibration templates. When the interpreter holds the 
phone with the rear camera facing the speaker, they can 
press the “calibrate” button. The app then plays audio 
instructions that tell the speaker to prepare to calibrate, and 
then instructs him to look up, down, left, right, center, and 
to close both eyes. Template matching will be more robust 
if these six gestures are distinct from each other, so for best 
performance, the speaker should make eye gestures that are 
exaggerated (far up, to the rightmost, etc.) to the extent 
possible while not being uncomfortable (Figure 4). In 
addition, while looking down, eyelashes may cover eyes 
naturally, which makes it appear to be similar to closed 
eyes. Thus, for the look down gesture, we suggest speakers 
try to keep their eyes open as wide as they are able while 
looking down, to improve performance (Figure 4). This 
calibration sequence takes ten seconds. Calibration is only 
required for the first time using the app, or if lighting 
conditions vary drastically (having a separate outdoor and 
indoor calibration may improve performance). Calibrations 
taken under different circumstances can be stored, labeled, 
loaded as needed, and transferred between different iOS 
devices.  

 To obtain calibration templates for eye gaze recognition, 
GazeSpeak performs the following four steps: 

1) Detect face and align landmarks: We use iOS’s built-in 
face detector to obtain a rectangle containing the speaker’s 
face. (OpenCV’s face detector could be used when 
extending GazeSpeak to other platforms that do not have 
built-in face detection support.) Then, we use dlib’s 
implementation of fast face alignment [10] to extract 
landmarks on the face. 

2) Extract an image of each eye: Once we get face 
landmarks, we calculate the bounding rectangle of eye 
landmarks. Then we extract images of each eye and process 
them separately. 

3) Normalize eye images: We resize each eye image to 
80x40 pixels. Then we convert the image to the HSV color 
space and only keep its V channel (value, i.e., brightness). 

4) Store eye gesture template: We save the normalized eye 
images on the phone, using the filenames to indicate the eye 
(left/right) and gesture (up/down/left/right/center/closed).  

Recognition Algorithm 
Once there is a new or existing calibration for the speaker, 
he may perform eye gestures to communicate while the 
interpreter aims the rear phone camera toward the speaker 
(Figure 1a). The interpreter can see the camera view on the 
screen and ensure the speaker’s face is in the view (Figure 
5x). For each camera frame, GazeSpeak performs the 
following steps as shown in Figure 5. It detects the face and 

Figure 4. Calibration review screen. A photo at the bottom 
left serves as a reminder of context (e.g., indoors, glasses off) 
that can also be added to the calibration name (top). This 
screen also shows the calibration templates captured for the 
up, left, right, down, closed and center gestures for each eye. 



 

 

 

aligns landmarks, extracts an image of each eye, and 
normalizes the eye images (the same first three steps as 
during calibration). Then GazeSpeak classifies eye gestures 
by matching the normalized eye images extracted from the 
current video frame with the calibration templates.  

Mean squared error (MSE) [16] measures the difference 
between two images. We use MSE to find the closest match 
for the normalized eye images among the six eye gesture 
templates obtained during calibration. Structural similarity 
[33] and the sum of absolute differences [35] are also 
candidates for measuring the difference between two 
images; however, MSE achieved the best recognition rate in 
our iterative testing and development of the system. 

Performance 
We tested our eye gesture recognition on recent models of 
the iPhone and iPad. For the iPhone, the recognition speed 
ranges from 27 frames per second (fps) (iPhone 6s Plus) to 
17 fps (iPhone 5s). For the iPad, it ranges from 34 fps (iPad 
Pro 9.7) to 16 fps (iPad mini 2). The slowest device still 
processes enough frames to confirm gestures for text entry. 

Robustness 
Our algorithm works in a variety of lighting conditions, 
including indoors and outdoors. Since it uses an RGB rather 
than IR camera, its performance is unlikely to be degraded 
under sunlight. In low-light conditions, GazeSpeak can turn 
on the phone’s flashlight to make the speaker’s face visible. 
To avoid flash burn to the eyes, we need to apply a diffuser-
like tape such as 3M tape (less than $1) over the flashlight. 
Our algorithm tolerates two major transformations: Scaling 
(e.g., if the interpreter moves the phone closer to the 
speaker), Translation (e.g., if the speaker moves his head a 
bit, or the interpreter slightly moves the phone while 
holding it), and Scaling + Translation (e.g., the interpreter 
puts down the phone, and later holds it in a slightly 
different position). Rotation of speaker’s head or the phone 
significantly changes perceived face shape and thus reduces 

recognition accuracy. Our app shows the face image and 
recognition results to visually assist the interpreter in self-
correcting the positioning. 

Accuracy 
To assess the accuracy of our gesture recognition system, 
we recruited 12 participants through email lists within our 
organization, and paid each participant $5 for a 30-minute 
session. They reported a mean of 29 years old (min 20, max 
44); five were male and seven were female. Six had a 
normal (uncorrected) vision, one wore contact lenses, and 
five wore glasses. Participants had varied skin and eye 
colors. During the study, each participant performed each of 
up/down/left/right/closed eye gestures 30 times; after each 
gesture, the participant looked back to center. In total, we 
recorded 300 eye gestures for each participant (30 x 5 + an 
additional 150 gazes toward the center). 

 Up Down Left Right Close Center 

Mean 88.6% 75.3% 87.8% 86.9% 77.5% 98.6% 

Stdev 5.2% 17.5% 4.8% 7.4% 13.5% 1.8% 

Table 1. GazeSpeak’s recognition rate of each eye gesture. 

For our 12 participants, the algorithm correctly recognized 
an average of 86% of all eye gestures (min = 68%, max = 
92%, med = 89%, stdev = 6.9%). Table 1 reports the 
recognition accuracy for each of the six eye gestures. 
GazeSpeak’s algorithm can recognize the center gesture 
with near perfect accuracy; looking up, left, or right also 
had good recognition rates. Looking down and closing the 
eyes are harder to recognize due to their sometimes-similar 
appearance, as explained in the Calibration section. 

We did not see any effect from age, gender, eye color, or skin 
color on the accuracy. For participants without corrective 
lenses, our system achieved 89.7% accuracy. Wearing 
contact lenses (only one participant) did not have a noticeable 
effect on accuracy (89%). However, an independent-samples 
t-test indicates wearing glasses significantly lowers the 
recognition accuracy to 80.4% (t(9) = 2.714, p = 0.024). 
Although glasses do not the affect the face detector, we 
suspect they may interrupt facial landmark alignment, 
sometimes resulting in mislabeling the eye area. Because 
we analyzed the recorded gesture videos offline, when we 
record the video, we did not have the recognition results as 
feedback to warn us to move the phone when the facial 
landmark alignment went wrong; however, when using 
GazeSpeak in real time, the interpreter can adjust the phone 
angle until she hears the correct recognition audio feedback, 
thus mitigating error for users with glasses. In fact, during 
our Usability Study (next section), we encountered very few 
recognition errors, even for speakers with glasses, likely 
because interpreters were able to use GazeSpeak’s video 
and audio feedback to mitigate error. 

Predictive Text Engine 
To avoid fatigue from making complex eye gestures, 
improve learnability, and improve recognition rates, 

Figure 5. Flowchart of eye gesture recognition algorithm. 



 

 

 

GazeSpeak uses a small number of simple eye gestures 
(up/down/left/right) to refer to all 26 letters of the English 
alphabet, using only one gesture per character entered (to 
reduce fatigue and increase throughput). This design leads 
to an ambiguous keyboard (Figure 6a) in which the letters 
of the alphabet are clustered into four groups that can each 
be indicated with one of the up, down, left, or right gestures. 
GazeSpeak implements a predictive text engine [22,23] to 
find all possible words that could be created with the letters 
in the groups indicated by a gesture sequence. Our 
implementation uses a trie [14] data structure to store 
common words and their frequencies in oral English: we 
select the most common 5,000 words (frequency min=4,875, 
max=22,038,615, mean=12,125) from this wordlist [6]. 
This trie can also be extended by an interpreter, who can 
add the speaker’s frequently-used words (including out-of-
dictionary words, such as names). For a series of eye 
gestures with length n, our trie structure allows us to rapidly 
look up its matching words and word frequencies in O(n) 
time. GazeSpeak can also look up high-frequency words 
whose initial characters match the gesture sequence thus far.  

We display a list of likely words based on the current 
gesture sequence on the phone’s screen for the interpreter 
(Figure 6b); we currently show the top four predictions by 
default, though additional predictions can be cycled through 
by horizontal scrolling. The prediction and auto-complete 
features help the interpreter predict possible words while 
the speaker is still entering text, enabling guessing ahead to 
improve throughput, and easing the interpretation burden 
that is present in using a low-tech e-tran board. 

For instance, in order to enter the word TASK, the speaker 
first looks down for T, then looks up for A, looks right for S, 
and looks left for K. The predictions after each eye gesture 
in this sequence are shown in Figure 6. 

To make it easier for the speaker to learn the gesture 
direction associated with a given letter, our four groups are 
simply clusters in alphabetical order (Figure 6a). An 
alternative letter grouping may reduce the conflict rate for 
word prediction; however, learnability was a higher design 
priority for this audience, as learnability is one of the 
challenges of using e-tran boards that motivated 
GazeSpeak’s creation. The word prediction conflict rate is 
reasonably low for this intuitive letter grouping. The 5,000 
most common words in our dictionary can be represented 
by 3248 unique eye gesture sequences. 83.5% of sequences 

match a unique word, 92.6% match two or fewer words, 
97.7% match four or fewer words, 99.2% match six or 
fewer words, and 99.6% match 8 or fewer words. 

If a word is not in the trie, the speaker has to use a scan-
based method to type the word letter by letter. To type a 
letter, he stares at the direction that contains that letter; 
GazeSpeak would read each letter in that key, and the 
speaker looks back to center once he hears the desired letter. 

Text Entry Interface 
The speaker and interpreter use different interfaces. The 
speaker sees the back of the phone, and thus the screen-less 
text entry interface consists of two major components: 1) a 
sticker displaying the four-key keyboard, and 2) audio 
feedback. The interpreter sees the phone screen, which 
shows four major components as in Figure 7: 1) the four-
key keyboard, 2) the input box and word predictions, 3) the 
sentence box and 4) the camera preview. 

Speaker Interface 
On the back of the phone, a four-key sticker (figure 1b) 
reminds the speaker of the letter groupings associated with 
each of the four gesture directions. To enter one character, 
the speaker moves his eyes in the direction associated with 
that letter’s group. Once GazeSpeak detects that the eyes 
have settled in one direction, it speaks aloud the direction it 
detected (e.g., “Up”). The speaker can then move his eyes 
to enter the next character. When the speaker mistypes or 
hears feedback indicating an incorrect gesture recognition, 
he can wink his left eye (if the speaker cannot wink, an 
alternative is to close both eyes for at least two seconds); 
this gesture removes the last character from the current 
sequence. When the speaker finishes a sequence for an 
entire word, he can wink his right eye (or alternatively look 
center for at least two seconds) to indicate the end of the 
word; then the system will speak aloud the first word 
prediction based on the entire series of eye gestures. The 
speaker can wink his right eye again to confirm this 
prediction, or perform a look right gesture to hear the next 
prediction. After a word has been confirmed, it is added to 
the sentence being constructed (Figure 7d). After the 
speaker confirms the last word of the sentence, he can wink 
his right eye again to confirm the end of the sentence, and 
the system will play the whole sentence aloud. 

When a tripod or phone stand is available, speakers could 
also choose to use GazeSpeak in the front-facing mode with 
minimum help from the caregivers. The speaker sees the 
screen, and the interface is similar to the interpreter 
interface in Figure 7. The major difference happens when 
the speaker indicates the end of the word. In addition to 
speaking aloud the first word, the system turns the first 
prediction red in order to visually indicate the current focus. 
The speaker can still perform a look right gesture to hear 
the next prediction, and see the visual focus switch to that 
prediction. 

Figure 6. Word predictions update after each gesture in this 
example four-gesture sequence to spell the word “task”. 



 

 

 

Interpreter Interface 
With information displayed on the phone screen, the 
interpreter can speed up the communication process. The 
input box (Figure 7b) shows the most likely word based on 
the current gesture sequence, and its length also indicates 
the number of eye gestures performed so far in the current 
sequence. When using low-tech e-tran boards, the ability to 
make guesses about likely words based on partial 
information is an important part of speeding up 
communication throughput; we designed GazeSpeak to 
support this existing communication practice. Even before 
the speaker finishes a word, if the interpreter sees a likely 
word prediction based on her knowledge of context, she can 
either say the word aloud or tap the prediction box to let 
GazeSpeak play the word aloud. The speaker can confirm 
or reject the prediction, either using gestures recognized by 
GazeSpeak (right-winking to confirm or left-winking to 
reject) or using mutually-agreed upon conventions common 
in e-tran communication (e.g., using other motions 
depending on the speaker’s range of mobility, such as nods, 
eyebrow raises, etc.). With a confirmation, the interpreter 
can then long-press the word to add it to the sentence box, 
and the speaker can proceed to begin a gesture sequence for 
the next word in the sentence. With a rejection of the 
prediction, the interpreter should let the speaker continue 
the eye gestures to complete the word. Once the speaker 
indicates the end of the sentence, the interpreter should 
confirm the sentence with the speaker by saying the 
sentence aloud or touching the sentence box to let 
GazeSpeak play it. 

There is also a manual mode that can be used when 
GazeSpeak has a hard time recognizing the speaker’s eyes; 
for example, if an oxygen mask or other medical equipment 
covers the speaker’s face, when the eye movement 
capability is very limited, or when the speaker wears highly 
reflective glasses. In this case, the interpreter can note the 
eye gestures of the speaker, and touch the corresponding 
keys on the four-key keyboard. This manual mode still 
allows the interpreter to take advantage of GazeSpeak’s 
predictive text engine to quickly decode what the speaker 

would like to say and to keep track of the words the speaker 
said, and still reduces the number of eye gestures required 
per character as compared to using an e-tran board. 

USABILITY STUDY 
We conducted a lab-based usability study to understand the 
relative performance, usability, and user preference for 
different modes of gesture decoding, comparing GazeSpeak 
to an e-tran board. Because ALS is a low-incidence disease 
(impacting 1 in 50,000 people [26]), recruiting a sufficient 
number of PALS to participate in a controlled study was 
impractical; additionally, the fatigue associated with ALS 
would make providing data for a controlled experiment 
such as this (which lasted nearly an hour in total) 
prohibitive for many potential participants. While we 
recognize that using able-bodied participants reduces the 
ecological validity of our study, it was a necessary tradeoff 
for being able to gather a sufficient amount of systematic 
data to evaluate GazeTalk’s baseline performance 
characteristics. We also conducted shorter, less formal 
testing sessions of GazeTalk with PALS and their 
caregivers, which we discuss in the next section. 

Participants 
For this evaluation, we recruited pairs of able-bodied 
participants from our organization; participants did not have 
prior experience with e-tran boards. Performing a lab study 
with able-bodied users allowed us to supplement the data 
possible to obtain from PALS with a larger and more 
controlled experiment; further, these participants provide a 
realistic insight into the learnability and usability of the 
system to first-time, novice adopters of the technology in 
either the interpreter or speaker role. Partners in our study 
were not necessarily acquainted with each other prior to the 
study; a close relationship might facilitate better guessing 
and speed input. However, in some situations e-tran may be 
used by a visitor or other medical professional who would 
be less familiar with the speaker’s context; our study better 
resembles that scenario. 

We recruited participants through email lists within our 
organization, and paid each participant $15 for a one-hour 
session. Interested participants completed a brief 
questionnaire about basic demographics and screening for 
e-tran board experience (which would be a disqualifier). 
From the eligible pool, we randomly selected twenty-four 
participants for a total of twelve pairs; two pairs did not 
show up for their assigned timeslot. The remaining twenty 
participants completed the study and reported an average 
age of 32 years (min 20, max 52); fourteen were male and 
six were female. When pairs arrived at the study session, 
they were randomly assigned to either the speaker or 
interpreter role. Among the ten speakers, five had a normal 
(uncorrected) vision, two wore contact lenses, and three 
wore glasses. 

Procedure 
We employed a within-subjects design to examine the input 
speed, usability, and user preference among three input 

Figure 7. Interpreter interface: (a) four-key keyboard; (b) the 
word input box shows top prediction of characters entered in 
the current sequence; (c) top four word predictions; (d) the 
sentence box shows prior words in the communication; (e) 
camera preview with a green face detection box. 



 

 

 

methods: an e-tran board, GazeSpeak’s default operation 
style, and GazeSpeak’s front-facing mode. We used a Latin 
Square design to counterbalance the ordering of the three 
input methods across participant pairs. For sentences to be 
entered during testing, we randomly picked a set of 
eighteen five-word-long  sentences (29-31 characters each) 
from the Mackenzie and Sourkeroff phrase sets commonly 
used for evaluating text entry techniques [19] to use as our 
testing corpus. 

Participation began with a brief introduction of the purpose 
of the study. We then randomly assigned the speaker and 
interpreter roles to the members of a pair (these roles were 
held constant for all three input methods). Participants sat 
face to face (in chairs set 18-inches apart).  

For each of the three conditions, we presented a tutorial on 
how to use the communication method, and let the pair 
practice until they felt comfortable using the method to 
communicate a two-word example utterance (e.g., “hello 
world”). We then privately showed the speaker a sentence 
from the testing corpus, and instructed them to 
communicate that sentence as quickly and accurately as 
possible to their partner without speaking, using only the 
current communication method.  We then started a timer 
and stopped the timer when the interpreter correctly 
decoded the sentence. This procedure continued until either 
six sentences had been successfully communicated or ten 
minutes had elapsed, at which point we stopped the session 
in order to avoid excessive fatigue. Participants then 
completed a short questionnaire providing feedback about 
their experience using that communication method, and 
took a short break if they felt fatigued. After repeating this 
procedure for all three communication methods, 
participants completed a final questionnaire ranking their 
preferences among all three methods. 

Results 
For each 10-minute session using a given interface, we 
prepared six sentences for the speaker to communicate to 
the interpreter. In the two GazeSpeak conditions, all pairs 
successfully communicated all six phrases. However, in the 
e-tran condition, pairs completed an average of 4 phrases.  

 Mean Median Min Max Stdev 

E-tran 143.4 122.5 72 298 57.4 

GazeSpeak 80.9 77.5 51 132 18.8 

GazeSpeak Front-Facing Mode 77.1 76 56 120 11.5 

Table 2. The time (in seconds) spent to complete a sentence 
using each input method. 

Participants, on average, spent 137.8 seconds to complete a 
sentence using the e-tran board, 80.9 seconds using 
GazeSpeak’s default mode and 77.1 seconds using 
GazeSpeak’s front-facing mode. A one-way repeated 
measures ANOVA indicates that mean input time differed 
significantly between input methods (F(1.067, 9.602) = 
21.032, p = 0.002). Follow-up pairwise paired-samples t-tests 

show that both modes of GazeSpeak bring a statistically 
significant reduction in input time as compared to the e-tran 
board (default mode vs. e-tran: t(9) = 4.136, p = 0.003, and 
front-facing mode vs. e-tran: t(9) = 3.983, p = 0.003). 

 
E-tran GazeSpeak Front-Facing 

S I S I S I 

It is unnecessarily complex 2.9 2.4 1.7 1.7 1.6 2.1 

I feel confident to use it 3.0 3.3 4.3 4.3 4.3 3.8 

Table 3. Speaker(S) and Interpreter(I)’s average agreement 
level (1=strongly disagree, 5=strongly agree) on each statement. 

The questionnaires completed after each condition asked 
participants to indicate their level of agreement with several 
statements about that condition’s input method on a 5-point 
Likert scale (Table 3). The Friedman test indicates there 
were statistically significant differences in 
perceived complexity between input methods (χ2 = 8.5, p = 
0.014). A Wilcoxon signed-rank test shows that 
GazeSpeak’s default mode has a statistically significant 
reduction in perceived complexity over the e-tran board (Z 
= -2.834, p = 0.005). There are no significant differences 
between GazeSpeak’s default and front-facing mode (Z = -
0.612, p = 0.541), or between e-tran board and GazeSpeak 
front-facing mode (Z = -1.794, p = 0.073). Part of the e-tran 
board’s complexity may be due to its diagonal directions; 
for instance, P21 (speaker) and other speakers made 
comments such as “looking diagonal was difficult.” A 
Friedman test also indicates there were statistically 
significant differences in perceived confidence in correctly 
communicating using each input methods (χ2 = 7.4, p = 
0.024). Participants reported feeling more confident using 
any mode of GazeSpeak than e-tran (default mode vs. e-tran: 
Z = -2.871, p = 0.004, and front-facing mode vs. e-tran: Z = 
-1.970, p = 0.049). 

 
E-tran GazeSpeak Front-Facing 

S I S I S I 

Mentally Demanding 4.8 4.5 3.3 2.5 3.4 2.6 

Task Difficulty  3.9 3.5 2.4 2.4 3.1 1.9 

Feel Stressed/Discouraged 3.9 2.2 2.1 1.9 2.4 1.8 

Table 4. Speakers’ (S) and Interpreters’ (I) average ratings 
(1=Very low, 7=Very high) for NASA TLX items. 

Our study questionnaires also included items from the 
NASA TLX scale [8], reported on a 7-point scale (Table 4). 
Participants rated the e-tran board as more mentally 
demanding than both modes of GazeSpeak (Friedman test: 
χ2 = 13.5, p = 0.001, default mode vs. e-tran: Z = -3.471, p 
= 0.001, and front-facing mode vs. e-tran: Z = -2.774, p = 
0.006). P12 (interpreter) described aspects of using the e-
tran board that were challenging, such as “to keep track of 
what had been spelled out so far, as well as which eye 
movements were to select a letter vs looking at the board.” 
P5 (speaker) noted that using GazeSpeak makes it “very 



 

 

 

simple to memorize the gestures, resulting in much less 
confusion and mistakes [than with e-tran].” Compare to the 
e-tran board, both modes of GazeSpeak were considered 
less difficult to use (Friedman test: χ2 = 7.0, p = 0.03, 
default mode vs. e-tran: Z = -2.560, p = 0.01, and front-
facing mode vs. e-tran: Z = -1.930, p = 0.05). P18 
(interpreter) explained this preference, “I liked that the 
technology on the phone was doing the hard work whereas 
I was only responsible for keeping track of when the 
speaker was done with spelling a word. It was much easier 
for me as an interpreter with the technology than without 
the technology.” Using GazeSpeak in front-facing mode 
made participants feel less stressed or discouraged than 
using the e-tran board (Z = -1.951, p = 0.05). For speakers, 
using GazeSpeak’s default mode significantly reduced 
feelings of stress and discouragement compared to using the 
e-tran board (Z = -2.328, p = 0.02). As P13 (speaker) 
described, “It [GazeSpeak] was way simpler than the first 
one [e-tran]. Only having to do one of four movements for a 
letter was much easier to indicate and I didn't feel like I had 
to emphasize the movements as much. The instant [audio] 
feedback on which direction I went was also helpful.” 

 
E-tran GazeSpeak Front-Facing 

S I S I S I 

Average Rank 2.9 2.8 1.6 2 1.5 1.2 

Table 5. Speaker(S) and Interpreter(I)’s average rank (1=Best, 
3=Worst) of each input method. 

After completing all sessions, participants ranked all three 
input methods based on their experience (Table 5). Overall, 
participants preferred GazeSpeak to the e-tran board; the e-
tran board was not selected by any participants as their 
favorite input method. A one-sample chi-square test 
showed a significant difference in the rankings of 
preferences for each system, with the e-tran board most 
likely to be ranked least favorite by all participants, 
regardless of role (χ2(1, N = 20) = 9.80, p = 0.002). P8 
(interpreter) articulated the reasoning behind this 
preference: “The smartphone app was better at 
interpreting the eye gestures and recounting the words.”  

Interpreters favored GazeSpeak’s front-facing mode as their 
top-ranked interface (likely because this mode resulted in 
less active interpreter involvement), χ2(1, N = 10) = 6.40, p 
= 0.01, whereas participants in the speaker role were not 
significantly more likely to have a clear preference between 
front-facing or rear-facing GazeSpeak, χ2(1, N = 10) = 0.40, 
p = 0.53. However, preferences for front and rear-facing use 
will likely vary with in-context use from the target user 
groups, as issues such as communication urgency, speed, 
autonomy, context, and others are likely quite different for 
PALS and their caregivers than for able-bodied users 
testing GazeSpeak in a lab setting (for example, while 
interpreters in our lab study enjoyed their reduced 
responsibilities with the front-facing UI, real-world 

communication partners of PALS may prefer a more active 
role in helping their partner communicate more quickly).  

The key learnings from this study are that GazeSpeak, in 
both configurations, was quick for participants to learn to 
use, and resulted in faster communication and greater user 
preference than an e-tran board.  

FEEDBACK FROM PALS AND THEIR CAREGIVERS 
We included PALS and their communication partners 
throughout our design process. Before we started the 
development, we did a formative survey to identify end-
user needs. During different stages of app development, we 
invited PALS and partners to our lab and did iterative 
demos/informal testing. When the GazeSpeak prototype 
was mature, we visited seven PALS and their caregivers to 
demonstrate GazeSpeak and obtain their feedback. In 
addition to demonstrating the system and giving a tutorial, 
we let them try GazeSpeak. One of the PALS, using 
GazeSpeak’s default mode with his caregiver, completed 
one of our 5-word (30-character) testing sentences in 62 
seconds, after only a brief tutorial. He also believed that 
communicating with his caregiver in his real life will be 
even faster than typing testing sentences: “I will say the 
same thing over and over, so my caregiver can predict the 
words really fast.” Caregivers liked the general concept: “I 
love the phone technology; I just think that would be so 
slick.” Caregivers envisioned GazeSpeak could be useful 
outdoors because they would not have to use “the big 
Tobii”; they also noted it would be useful in the car, as 
Tobii and its mount are so bulky that one PALS’s spouse 
noted she does not allow her husband to use it in the car due 
to concerns that it could be a safety hazard in the event of a 
crash.  

These informal tests with PALS also identified important 
opportunities for improvement, revealing usability issues 
not uncovered in our lab study with able-bodied participants. 
Two of the seven PALS wore oxygen masks, which 
confused GazeSpeak’s face detector, resulting in failed eye 
gesture recognition. The use of manual mode, mentioned in 
the end of Interpreter Interface section, is one possible 
solution that could be used in this circumstance; however, a 

Figure 8. A PALS using GazeSpeak with his caregiver. 



 

 

 

more desirable solution would be to train a detector for 
faces with an oxygen mask, or train a detector for eyes in 
the absence of other facial landmarks. Also, testing with 
PALS revealed variation in the speed with which they could 
move their eyes; four of the PALS with more advanced 
disease progression could not move their eyes as quickly as 
our automated calibration sequence demanded. 
Consequently, we improved GazeSpeak by (1) slowing 
down the calibration sequence to allow more time to 
perform each gesture and (2) adding a “manual calibration” 
option in which the caregiver can control the pacing of 
capturing each calibration image before moving on to the 
next one. Caregivers requested that the screen show more 
predictions if an eye gesture sequence represents more than 
four words, especially when the caregivers extend the 
dictionary to include names and other custom vocabulary. 
One PALS commented: “Having more options could slow 
the caregiver down, but the fact that my caregiver and I 
work independently could mean it will be faster [overall].” 
Automatic feedback on the quality of an acquired 
calibration would also give caregivers extra confidence in 
using the system. 

DISCUSSION  
We created GazeSpeak, a low-cost and high-tech AAC 
solution for people who rely on eye gaze communication, as 
an alternative to current high-cost/high-tech and low-
cost/low-tech solutions. Compared to a low-tech e-tran 
board, GazeSpeak is smaller (a phone is about 6% of a 
typical board’s size) and lighter (about 30% of a typical 
board’s weight). Compared to a high-end IR-based eye-
tracking system, GazeSpeak is also smaller and lighter, it 
does not require a fixed mounting and is therefore more 
portable, and it is more robust to varied lighting sources, 
since IR light such as bright sunlight does not interfere with 
a smartphone’s camera. To reduce the difficulty of error 
correction, GazeSpeak does not only allow interpreters to 
manually recognize mutually-agreed upon conventions 
common in e-tran communication, but also allows the 
speaker to correct errors by recognizing a left wink or 
closing both eyes for a period of time; GazeSpeak also 
reduces the cognitive complexity of communication as 
compared to e-tran board use: for the speaker, letter entry is 
simplified from two gestures per character in e-tran to one 
in GazeSpeak, and for the interpreter, GazeSpeak improves 
upon e-tran by showing predictions of likely words and by 
keeping track of prior words spoken in the current utterance. 
Our usability study showed that GazeSpeak significantly 
improves communication speed compared to an e-tran 
board. 

To make GazeSpeak even more robust and suitable to a 
wider range of end-user needs and abilities, we include a 
manual input mode for use when eye gestures cannot be 
recognized, and a front-facing mode that can be used when 
a phone stand is available. The front-facing mode allows 
GazeSpeak to be used without the help of an interpreter, 
offering the possibility of a lower-cost, but lower-fidelity 

and less general-purpose, alternative to commercial eye-
tracking solutions if someone cannot afford one. In 
following principles of ability-based design [36],  
GazeSpeak gracefully adds/degrades functionality 
depending on a user’s capabilities, such as allowing 
backspacing if left-winking is possible, offering dual-eye 
closing as an alternative to winking, and still functioning 
without the backspace capability at all if the speaker can 
perform neither of those gestures. We have also 
implemented a head-tracking mode that can be used as an 
alternative to eye gestures depending on the capabilities and 
preferences of the speaker.  

Our feedback sessions with PALS and their communication 
partners found areas for further improvement of GazeSpeak. 
To improve eye gesture recognition availability, we can 
improve the face detection and eye detection algorithms to 
have robustness in cases of face-worn medical equipment. 
We can also further improve the word prediction by 
automatically updating the weight of prediction from daily 
usage, and making word prediction based on already-typed 
words and other contextual information (e.g., location 
information from the phone’s GPS [9]), and offering a 
larger n-best list for interpreters to select from.  

While our evaluations gave insight into usability and 
performance for novice users, additional types of evaluation 
can offer additional value. For example, longer-term studies 
of use would give insight into the relative learning curves of 
GazeSpeak versus other AAC methods, and would allow 
characterization of expert-level performance. More formal, 
long-term data collection from PALS and their 
communication partners, while logistically complex, is 
particularly important for understanding in situ use of this 
new type of AAC. GazeSpeak may also hold value for other 
audiences besides PALS (e.g. people with cerebral palsy, 
spinal cord injury, stroke, traumatic brain injury, etc.). 
Because PALS can have different eye movement pattern 
than other motor-impaired users, additional testing may be 
necessary to modify GazeSpeak to support such users. 

CONCLUSION 
In this paper, we introduce GazeSpeak, a smartphone app to 
facilitate communication for people with motor disabilities 
like ALS. In real time, GazeSpeak robustly recognizes eye 
gestures and decodes them to words. Our user studies show 
that GazeSpeak surpasses e-tran boards (a commonly-used 
low-tech solution) in both communication speed and 
usability, with a low rate of wrong recognition. Feedback 
from PALS and their communication partners affirmed the 
value of offering a portable, low-cost technology to 
supplement IR-based eye tracking systems in situations 
where they are impractical to use (or are unaffordable to 
purchase).  
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